Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Electromagn Compat Mag ; 11(3): 49-54, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36699954

RESUMO

It has been shown that the presence of a hand holding a wireless handset (cell phone) can influence antenna efficiency and the measurement of specific absorption rate (SAR) and electromagnetic compatibility. Head phantoms, used in handset compliance testing to estimate SAR in the head, have achieved low cost and multi-frequency use. Head phantoms typically consist of a thin plastic shell, open on the top, holding a tissue simulating fluid. The specific simulant fluid used is determined by the radio frequency of the test. IEC 62209-1 has recipes, using safe nontoxic materials, for all the required frequency bands. Thus, head phantoms can be reused at different frequencies simply by changing the tissue simulating fluid. However, standards have not adopted the use of hand phantoms because SAR limits in limbs are less restrictive than the head, the tissue depth in a hand is insufficient to make accurate measurements with current electric field probes, and the cost of a solid hand phantom is limited to a single frequency band. Our goal was to determine whether 3D printing techniques would allow the construction of a hand phantom with the same utility as existing head phantoms. We developed this phantom based on computer simulations to determine how much human anatomy needed to be included in the phantom to obtain results consistent with actual use. Electric field scans of a handset alone, and held by the hand phantom, were performed. Comparison of handset scans using the phantom and human subjects was planned, but not performed due to Covid-19 restrictions and subsequent changes in priorities. We feel a fluid-filled 3D printed hand phantom is viable and practical. The 3D print files are available on GitHub.

2.
IEEE Trans Electromagn Compat ; 48(3): 579-588, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29520117

RESUMO

This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory's measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power.

3.
IEEE Trans Electromagn Compat ; 48(2): 397-407, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29515260

RESUMO

The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

4.
IEEE Electromagn Compat Mag ; 4(3): 59-66, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29520332

RESUMO

Cellular telephones (cellphones) are currently categorized for hearing aid compatibility based on a calculated value (metric) obtained from the measurement of near-field, radio-frequency emissions according to a procedure described in ANSI Standard C63.19 "Measurement of Compatibility between Wireless Communications Devices and Hearing Aids". There has been a lack of documentation, however, that relates this metric to a cellphone's potential for interference in actual use, that is, when it is held at the ear in a normal-use position by a hearing aid wearer. In Part 1 of this two-part series, we compare the ANSI C63.19 metric to simpler metrics, still based on the near-field test procedure of the standard, and to near-field measurements made when the cellphones are hand-held. The results justify employing a simpler no-hand metric than the exclusion area procedure presently specified by the standard, but not the addition of a test hand to the procedure. The further effect of the head and interaction with the hearing aid is examined in Part 2 of the series.

5.
IEEE Electromagn Compat Mag ; 4(4): 66-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-29541530

RESUMO

Cellphones and hearing aids are presently tested for their near-field RF emissions and RF immunity, respectively, to predict their mutual compatibility when used together. In the concluding part of this two-part series, we examine the relationship between these independent device measurements and the resultant in-use coupled RF interference, which may be heard as audio frequency noises by the hearing aid wearer. The established standards are seen to be generally reasonable in meeting the compatibility goals (i.e., ensuring a low level of perceived audio interference), but the combined effects of the relative device positioning, the hand, and especially the head add a high degree of uncertainty to the relationship between the actual in-use RF interference coupling and predictions based on individual emissions and immunity measurements.

6.
Phys Med Biol ; 48(13): 2013-22, 2003 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-12884932

RESUMO

We propose a new application of voltage gradient measurements to determine specific absorption rate (SAR) at low frequencies where quasi-static electromagnetic conditions apply. This method, which we call the voltage gradient method, relies on direct measurement of the voltage field rather than measurement of the electric field or thermal transients. The voltage gradient method is fast and can be implemented with voltmeters of moderate cost. We tested the voltage gradient method using normal saline, in a phantom with simple geometry, and a sine wave voltage source at 5, 10, 20 and 50 kHz. Compared to the SAR measured thermally in the same phantom, the voltage gradient method produced almost identical curves when normalized. When the results of the voltage gradient method were scaled to the same power level used for the thermal SAR, the agreement was compatible with typical thermal SAR accuracy.


Assuntos
Fenômenos Eletromagnéticos , Imagens de Fantasmas , Absorção , Modelos Teóricos , Temperatura , Fatores de Tempo
7.
Biomed Eng Online ; 3(1): 34, 2004 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-15482601

RESUMO

We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.


Assuntos
Telefone Celular , Exposição Ambiental , Cabeça , Modelos Anatômicos , Imagens de Fantasmas , Ondas de Rádio , Radiometria/normas , Artefatos , Biologia Computacional , Simulação por Computador , Orelha Externa/anatomia & histologia , Humanos , Masculino , Radiometria/instrumentação
8.
IEEE Electromagn Compat Mag ; 2(2): 69-81, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29541529

RESUMO

For many Equipment Under Test (EUT), such as the hearing aids examined in this study, the desired RF immunity measurement result is that which would be measured in the most sensitive EUT orientation relative to an applied RF field. This is generally approximated from measurements at a number of predetermined orientations within a GTEM cell. This paper presents new 6 and 12-orientation "maximal sum" methods of small EUT immunity measurement, which may be considered extensions to present sorted three-input vector summation techniques. Experimental results for the new methods approached the established reference goal more consistently than did other approaches examined employing a comparable number of contributing measurements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa