RESUMO
The very limited options available to treat ventricular failure in children with congenital and acquired heart diseases have motivated the development of a pediatric ventricular assist device at the University of Pittsburgh (UoP) and University of Pittsburgh Medical Center (UPMC). Our effort involves a consortium consisting of UoP, Children's Hospital of Pittsburgh (CHP), Carnegie Mellon University, World Heart Corporation, and LaunchPoint Technologies, Inc. The overall aim of our program is to develop a highly reliable, biocompatible ventricular assist device (VAD) for chronic support (6 months) of the unique and high-risk population of children between 3 and 15 kg (patients from birth to 2 years of age). The innovative pediatric ventricular assist device we are developing is based on a miniature mixed flow turbodynamic pump featuring magnetic levitation, to assure minimal blood trauma and risk of thrombosis. This review article discusses the limitations of current pediatric cardiac assist treatment options and the work to date by our consortium toward the development of a pediatric VAD.
Assuntos
Coração Auxiliar , Materiais Biocompatíveis , Criança , Oxigenação por Membrana Extracorpórea , HumanosRESUMO
The very limited options available to treat ventricular failure in patients with congenital and acquired heart diseases have motivated the development of a pediatric ventricular assist device (VAD). Our effort involves a consortium consisting of the University of Pittsburgh, Carnegie Mellon University, Children's Hospital of Pittsburgh, World Heart Corporation, and LaunchPoint Technologies, LLC. The overall aim of our program is to develop a highly reliable, biocompatible VAD for chronic support (6 months) of the unique and high-risk population of children between 3 kg and 15 kg (patients from birth to 2 years of age). The innovative pediatric VAD we are developing (PediaFlow) is based on a miniature mixed-flow turbodynamic pump featuring magnetic levitation, with the design goal being to assure minimal blood trauma and risk of thrombosis. This article discusses the limitations of current pediatric cardiac assist treatment options and the work to date by our consortium toward the development of a pediatric VAD.
Assuntos
Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Materiais Biocompatíveis/uso terapêutico , Pré-Escolar , Simulação por Computador , Desenho de Equipamento , Cardiopatias Congênitas/complicações , Cardiopatias/complicações , Insuficiência Cardíaca/etiologia , Humanos , Lactente , Modelos CardiovascularesRESUMO
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CF-VAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.
RESUMO
Improvements in implantable ventricular assist device (VAD) performance will be required to obtain patient outcomes that are comparable with those of heart transplantation. The HeartQuest VAD (WorldHeart, Oakland, CA, U.S.A.) is an advanced device, with full magnetic suspension of the rotor, designed to address specific clinical shortcomings in existing devices and to maximize margins of safety and performance for an implantable assist device. The device dimensions are 35 x 75 mm, with a total weight of 440 g. The system was designed using extensive computer modeling of device function; a total of two iterations of device prototypes were built before building the clinical version. Animal study results have been very promising, with over 30 calf studies completed. Plasma-free hemoglobin levels returned to preoperative levels, and other hematology results were in the normal ranges. Highlights include clean surfaces seen in a 116-day experiment with no anticoagulation after day 43. Feasibility clinical trials are planned to start in 2006.
Assuntos
Coração Artificial , Animais , Procedimentos Cirúrgicos Cardíacos/instrumentação , Bovinos , Coração Artificial/efeitos adversos , Coração Artificial/classificação , Hemoglobinas/metabolismo , Hemorreologia , Masculino , Desenho de Prótese , TitânioRESUMO
Motivated by the design of the HeartQuest magnetically levitated left ventricular assist device, closed form expressions have been developed to compute forces and stiffnesses of magnetic suspensions. The theory applies to any combination of concentric permanent magnet rings, and its accuracy and versatility were verified by experiments. The equations adapt to spreadsheet implementation and numerical optimization, providing a powerful tool of optimal design of magnetically levitated ventricular assist devices (VADs). The method was applied to the development of the HeartQuest VAD which achieved remarkable compactness and stable operation.