Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 137(4): 044311, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22852622

RESUMO

Nanomaterials with disordered, ramified structure are increasingly being used for applications where low cost and enhanced performance are desired. A particular example is the use in printed electronics of inorganic conducting and semiconducting nanoparticles. The electrical, as well as other physical properties depend on the arrangement and connectivity of the particles in such aggregate systems. Quantification of aggregate structure and development of structure/property relationships is difficult and progress in the application of these materials in electronics has mainly been empirical. In this paper, a scaling model is used to parameterize the structure of printed electronic layers. This model has chiefly been applied to polymers but surprisingly it shows applicability to these nanolayers. Disordered structures of silicon nanoparticles forming aggregates are investigated using small angle x-ray scattering coupled with the scaling model. It is expected that predictions using these structural parameters can be made for electrical properties. The approach may have wide use in understanding and designing nano-aggregates for electronic devices.

2.
Nanoscale ; 9(7): 2417-2423, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27935620

RESUMO

Polyalkylated copolymers based on mPEG-b-(AGE-C6,12 or 18)25 have been used to formulate clinically relevant concentrations of doxorubicin (DOX) and the impact of drug incorporation on copolymer aggregation behaviour was examined. The copolymer aggregates were analyzed by various microscopy techniques (TEM, cryo-TEM and AFM) and scattering methods (SANS, DLS). In the absence of the drug, the copolymers formed largely non-spherical aggregates (i.e. cylinders, vesicles). Drug incorporation during copolymer aggregate formation directed the formation of only spherical aggregates. As well, the nature of the core-forming block was found to influence drug release and cytotoxicity of the formulations.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(3 Pt 1): 031401, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15524520

RESUMO

Particles of micrometer to nanometer size often aggregate to form branched structures. Such materials include metals and metal oxides as well as biological and polymeric materials (considering the persistence length as a primary unit). Characterization of such structures is difficult since they typically display disordered, irregular features in three dimensions. Branched aggregates display two limiting size scales: that of the primary particle, R1 and that of the aggregate, R2. The mass-fractal model is often used to describe such structures where the aggregate mass, z=M2/M1, is related to the aggregate size, r=R2/R1, through a scaling relationship z=alpha r (d(f)), where the lacunarity alpha is close to 1 and may depend on the growth mechanism. Scattering of x rays, light and neutrons yields a direct measure of the mass-fractal dimension since I(q) approximately q(-d(f)) for 1/R2

4.
Eur Phys J E Soft Matter ; 18(1): 29-36, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16179971

RESUMO

Small-angle neutron scattering measurements were performed on end-linked poly (dimethylsiloxane) (PDMS) networks swollen to equilibrium with d-benzene. Comparison was made with equivalent concentration PDMS solutions. Equilibrium-swollen networks consistently displayed a linear scattering regime at low q followed by a good-solvent-like scaling regime at high q in agreement with the predictions of the Gel Tensile Blob (GTB) model. Data are fit using the unified function modified for the GTB model (3-parameter fit). Equilibrium-swollen networks display a base structural size, the gel tensile-blob size, xi, that was found to be independent of the molecular weight between crosslinks for the series of molecular weights studied, consistent with the predictions of the model. The length of the extended tensile structure, L, can be larger than the length of the fully extended network strand. The predicted scaling relationship for L, L approximately Q(1/2)N(avg), where N(avg) = (1/fN(c)(2) + 1/4N(e)(2), Q is the equilibrium swelling ratio, N(c) is the molecular weight between crosslinks, N(e) is the entanglement molecular weight and f is the crosslink functionality is in agreement with experimental results for the networks studied.

5.
J Colloid Interface Sci ; 194(2): 470-81, 1997 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9398430

RESUMO

Zirconium oxychloride solutions prepared at different pH were heated at elevated temperatures for various aging periods to gain an understanding of the growth mechanism and structure of zirconium hydrous polymers. Small angle X-ray scattering (SAXS) measurements were made on these solutions. It was observed that shape of clusters at the earlier stages of growth is close to a rod rather than a sheet as suggested earlier. The scattering data indicate that a rod-shaped primary particle is formed at pH 1.2, and on an increase in the pH, the primary particles become more branched. On aging more than 1250 min at 92°C, these primary particles form large aggregates while retaining the primary particle structure. These aggregates, which are mass fractal in nature, restructure while growing in size and eventually transform into dense particles. Scattering data in this study were not enough to determine a specific kinetic growth model of the aggregates because the scattering intensity at low q constantly changes with time during the restructuring process. Copyright 1997 Academic Press. Copyright 1997Academic Press

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa