Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10745-10752, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584361

RESUMO

Hydrothermal methods are widely used to synthesize functional inorganic materials. The interplay between the reactive species, solution chemistry, and the nanoscale product makes it challenging to control the reaction pathway to achieve a uniform product. Here, we resolve the heterogeneity that arises during hydrothermal synthesis across different length scales. We combine spatially resolved in situ X-ray pair distribution function (PDF) and small-angle X-ray scattering analysis, which are sensitive to structure on the atomic and nanoscale, with a novel time-lapse optical imaging strategy that reveals heterogeneity and phase separations across the entire reaction. For TiO2 synthesis via hydrothermal hydrolysis of TiCl4, we identify multiple cycles of TiO2 formation and separation that contribute to nonuniformity in the polymorphic product. The PDF data show that the characteristics of TiO2 formed during each formation-separation cycle differ, contributing to the ongoing challenge of precisely identifying reaction controls. The imaging strategy pioneered here provides an efficient in situ means to systematically compare how the reaction evolves under different chemical conditions, thereby advancing our understanding of functional inorganic material synthesis.

2.
J Am Chem Soc ; 145(49): 26545-26549, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019924

RESUMO

Solid-state syntheses are generally regarded as being slow, limited by transport, and, as such, are often only stopped to check the products after many hours at high temperature. Here, using a custom-designed reactor to rapidly initiate solid-state syntheses, we are able to capture the earliest stages of a reaction using in situ X-ray scattering. For the reaction of TiO2 and Li2CO3 to form spinel lithium titanate (Li4Ti5O12)─an anode material for fast-charging applications─we capture two distinct kinetic regimes, including fast initial kinetics in the first seconds-minutes of the reaction that account for significant product formation. We use an Avrami model to compare the reaction at high temperatures (700-750 °C), which results in the rapid formation of Li4Ti5O12 within minutes, and lower temperatures (482 °C), consistent with conditions that might be chosen based on "Tamman's rule", a common heuristic. Our analysis reveals characteristic Avrami slopes (i.e., dimensionalities) for each step in the chemical transformation. We anticipate that the fast initial reaction kinetics found here are likely to be common in the synthesis of other materials used in battery electrodes, solid-state electrolytes, ion-conductive membranes, etc. where ion transport is a prerequisite for functionality.

3.
J Am Chem Soc ; 141(45): 18142-18151, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31670511

RESUMO

Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)═O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mössbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and  highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).

4.
Chem Sci ; 12(41): 13836-13847, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760169

RESUMO

Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa