Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(6): e2300458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389157

RESUMO

SCOPE: Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth. METHODS AND RESULTS: Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days. SPC contained no protein aggregates and more native lactoferrin, and despite higher Maillard reaction product (MRP) formation, the clinical response and most gut and immune parameters are similar to WPC pigs. SPC feeding negatively impacts intestinal MRP accumulation, mucosa, and bacterial diversity. In contrast, circulating T-cells are decreased and oxidative stress- and inflammation-related genes are upregulated in WPC pigs. Protein aggregation and MRP formation increase in HTS-SPC, leading to reduced antibacterial activity, lactase/maltase ratio, circulating neutrophils, and cytotoxic T-cells besides increased gut MRP accumulation and expression of TNFAIP3. CONCLUSION: The gently processed SPC has more native protein, but higher MRP levels than WPC, resulting in similar tolerability but subclinical adverse gut effects in preterm pigs. Additional heat treatment and storage further induce MRP formation, gut inflammation, and intestinal mucosal damage.


Assuntos
Fórmulas Infantis , Leite , Humanos , Recém-Nascido , Lactente , Animais , Suínos , Proteínas do Soro do Leite , Intestinos/fisiologia , Recém-Nascido Prematuro , Inflamação
2.
Food Chem ; 405(Pt A): 134716, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36351316

RESUMO

The NPN compounds from dairy processing side-streams are a promising source for new products. In this study, the NPN profile of lactose production samples was screened using GC-MS and 1H NMR spectroscopy. These analytical platforms allowed the identification of 35 NPN compounds including, amino acids and derivatives, amino alcohols, organic acids, and other classes. Quantification of the NPN compounds revealed their attenuation by unit operations during a trial lactose production. Urea, ammonia, glycerophosphocholine, creatine, creatinine, orotic acid and choline were the most dominant compounds. Mother liquor concentrate had the highest concentration of NPN, whereas lactose powder had substantial relative amounts of N-acetylglucosamine, phosphocholine and orotic acid. The NPN compounds added up to 57-99% of the total nitrogen, depending on the sample type. The highest nitrogen recovery was found for the reverse osmosis retentate, mother liquid concentrate, wash water and reverse osmosis permeate, whereas the lowest was found for lactose powder.


Assuntos
Lactose , Soro do Leite , Animais , Soro do Leite/química , Lactose/metabolismo , Nitrogênio/análise , Leite/química , Rios , Pós/análise , Ácido Orótico/análise , Proteínas do Soro do Leite/análise , Compostos de Nitrogênio/análise
3.
J Agric Food Chem ; 70(1): 319-332, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967606

RESUMO

The most widely used whey protein ingredient in an infant formula (IF) is the whey protein concentrate (WPC). The processing steps used in the manufacturing of both a powdered IF and a WPC introduce protein modifications that may decrease the nutritional quality. A gently processed whey protein ingredient (serum protein concentrate; SPC) was manufactured and used for the production of a powdered IF. The SPC and the SPC-based IF were compared to the WPC and the powdered WPC-based IF. Structural protein modifications were evaluated, and Maillard reaction products, covering furosine, α-dicarbonyls, furans, and advanced glycation end products, were quantified in the IFs and their protein ingredients. IF processing was responsible for higher levels of protein modifications compared to the levels observed in the SPC and WPC. Furosine levels and aggregation were most pronounced in the WPC, but the SPC contained a high level of methylglyoxal, revealing that other processing factors should be considered in addition to thermal processing.


Assuntos
Fórmulas Infantis , Reação de Maillard , Humanos , Pós , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa