Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Nat Immunol ; 25(5): 764-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609546

RESUMO

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Assuntos
Síndromes de Imunodeficiência , Proteínas do Tecido Nervoso , Ubiquitinas , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Feminino , Masculino , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Inflamação/imunologia , Inflamação/genética , Linfócitos B/imunologia , Mutação com Perda de Função , Fibroblastos/metabolismo , Fibroblastos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , Alelos
2.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360993

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Assuntos
Enzimas Ativadoras de Ubiquitina , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Humanos , Mutação de Sentido Incorreto , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
3.
Cell ; 151(1): 181-93, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021224

RESUMO

Mononucleosomes, the basic building blocks of chromatin, contain two copies of each core histone. The associated posttranslational modifications regulate essential chromatin-dependent processes, yet whether each histone copy is identically modified in vivo is unclear. We demonstrate that nucleosomes in embryonic stem cells, fibroblasts, and cancer cells exist in both symmetrically and asymmetrically modified populations for histone H3 lysine 27 di/trimethylation (H3K27me2/3) and H4K20me1. Further, we obtained direct physical evidence for bivalent nucleosomes carrying H3K4me3 or H3K36me3 along with H3K27me3, albeit on opposite H3 tails. Bivalency at target genes was resolved upon differentiation of ES cells. Polycomb repressive complex 2-mediated methylation of H3K27 was inhibited when nucleosomes contain symmetrically, but not asymmetrically, placed H3K4me3 or H3K36me3. These findings uncover a potential mechanism for the incorporation of bivalent features into nucleosomes and demonstrate how asymmetry might set the stage to diversify functional nucleosome states.


Assuntos
Células-Tronco Embrionárias/metabolismo , Código das Histonas , Histonas/metabolismo , Nucleossomos/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Fibroblastos/metabolismo , Células HeLa , Histonas/química , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
4.
Blood ; 143(21): 2190-2200, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38306657

RESUMO

ABSTRACT: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, caused by somatic mutations in UBA1, is an autoinflammatory disorder with diverse systemic manifestations. Thrombosis is a prominent clinical feature of VEXAS syndrome. The risk factors and frequency of thrombosis in VEXAS syndrome are not well described, due to the disease's recent discovery and the paucity of large databases. We evaluated 119 patients with VEXAS syndrome for venous and arterial thrombosis and correlated their presence with clinical outcomes and survival. Thrombosis occurred in 49% of patients, mostly venous thromboembolism (VTE; 41%). Almost two-thirds of VTEs were unprovoked, 41% were recurrent, and 20% occurred despite anticoagulation. The cumulative incidence of VTE was 17% at 1 year from symptom onset and 40% by 5 years. Cardiac and pulmonary inflammatory manifestations were associated with time to VTE. M41L was positively associated specifically with pulmonary embolism by univariate (odds ratio [OR]: 4.58, confidence interval [CI] 1.28-16.21, P = .02) and multivariate (OR: 16.94, CI 1.99-144.3, P = .01) logistic regression. The cumulative incidence of arterial thrombosis was 6% at 1 year and 11% at 5 years. The overall survival of the entire patient cohort at median follow-up time of 4.8 years was 88%, and there was no difference in survival between patients with or without thrombosis (P = .8). Patients with VEXAS syndrome are at high risk of VTE; thromboprophylaxis should administered be in high-risk settings unless strongly contraindicated.


Assuntos
Trombose , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Trombose/etiologia , Trombose/genética , Trombose/epidemiologia , Adolescente , Enzimas Ativadoras de Ubiquitina/genética , Adulto Jovem , Fatores de Risco , Idoso , Criança , Trombose Venosa/etiologia , Trombose Venosa/epidemiologia , Trombose Venosa/genética , Incidência , Mutação , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Pré-Escolar
5.
Nature ; 577(7788): 103-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827281

RESUMO

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Assuntos
Caspase 8/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo , Mutação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 3/metabolismo , Feminino , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Proc Natl Acad Sci U S A ; 120(35): e2310046120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603746

RESUMO

The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.


Assuntos
Alphaproteobacteria , Clima , Atmosfera , Biomassa , Metano
7.
Blood ; 142(3): 244-259, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084382

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Assuntos
Hematopoiese Clonal , Dermatite , Humanos , Hematopoiese Clonal/genética , Estudos Prospectivos , Estudos Retrospectivos , Mutação
8.
J Infect Dis ; 229(6): 1740-1749, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871359

RESUMO

BACKGROUND: We examined effects of single-nucleotide variants (SNVs) of IL1RN, the gene encoding the anti-inflammatory interleukin 1 receptor antagonist (IL-1Ra), on the cytokine release syndrome (CRS) and mortality in patients with acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: IL1RN CTA haplotypes formed from 3 SNVs (rs419598, rs315952, rs9005) and the individual SNVs were assessed for association with laboratory markers of inflammation and mortality. We studied 2589 patients hospitalized with SARS-CoV-2 between March 2020 and March 2021. RESULTS: Mortality was 15.3% and lower in women than men (13.1% vs 17.3%, P = .0003). Carriers of the CTA-1/2 IL1RN haplotypes exhibited decreased inflammatory markers and increased plasma IL-1Ra. Evaluation of the individual SNVs of the IL1RN, carriers of the rs419598 C/C SNV exhibited significantly reduced inflammatory biomarker levels and numerically lower mortality compared to the C/T-T/T genotype (10.0% vs 17.8%, P = .052) in men, with the most pronounced association observed in male patients ≤74 years old, whose mortality was reduced by 80% (3.1% vs 14.0%, P = .030). CONCLUSIONS: The IL1RN haplotype CTA and C/C variant of rs419598 are associated with attenuation of the CRS and decreased mortality in men with acute SARS-CoV-2 infection. The data suggest that the IL1RN pathway modulates the severity of coronavirus disease 2019 (COVID-19) via endogenous anti-inflammatory mechanisms.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Haplótipos , Proteína Antagonista do Receptor de Interleucina 1 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/sangue , COVID-19/mortalidade , COVID-19/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2/genética , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/mortalidade , Adulto , Genótipo , Biomarcadores/sangue
9.
Artigo em Inglês | MEDLINE | ID: mdl-38552317

RESUMO

OBJECTIVE: The vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is a complex immune disorder consequence of somatic UBA1 variants. Most reported pathogenic UBA1 variants are missense or splice site mutations directly impairing the translational start site at p. Met41, with recent studies showing that these variants are frequent causes of recurrent inflammation in older individuals. Here we aimed to characterize a novel UBA1 variant found in two patients clinically presenting with VEXAS syndrome. METHODS: Patients' data were collected from direct assessments and from their medical charts. Genomics analyses were performed by both Sanger and amplicon-based deep sequencing, mRNA studies were performed by both cDNA subcloning and mRNA sequencing. RESULTS: We report a novel, somatic variant in a canonical splice site of the UBA1 gene (c.346-2A>G), which was identified in two unrelated adult male patients with late-onset, unexplained inflammatory manifestations including recurrent fever, Sweet syndrome-like neutrophilic dermatosis, and lung inflammation responsive only to glucocorticoids. RNA analysis from patients' samples demonstrated aberrant mRNA splicing leading to multiple in-frame transcripts, including a transcript retaining the full sequence of intron 4 and a different transcript with the deletion of the first 15 nucleotides of exon 5. CONCLUSION: Here we describe the abnormal UBA1 transcription as a consequence of the novel c.346-2A>G variant identified in two patients with clinical features compatible with VEXAS syndrome. Overall, these results further demonstrate the expanding spectrum of variants in UBA1 leading to pathology and support for a complete gene evaluation in those candidate patients for VEXAS syndrome.

10.
Blood ; 140(13): 1496-1506, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35793467

RESUMO

Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.


Assuntos
Nucleotídeos , Enzimas Ativadoras de Ubiquitina , Códon de Iniciação , Humanos , Mutação , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitinação
11.
Pediatr Dermatol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413050

RESUMO

Monogenic diseases of immune dysregulation should be considered in the evaluation of children presenting with recurrent neutrophilic dermatoses in association with systemic signs of inflammation, autoimmune disease, hematologic abnormalities, and opportunistic or recurrent infections. We report the case of a 2-year-old boy presenting with a neutrophilic dermatosis, found to have a novel likely pathogenic germline variant of the IKAROS Family Zinc Finger 1 (IKZF1) gene; the mutation likely results in a loss of function dimerization defective protein based on reports and studies of similar variants. IKZF1 variants could potentially lead to aberrant neutrophil chemotaxis and development of neutrophilic dermatoses. Long-term surveillance is required to monitor the development of hematologic malignancy, autoimmunity, immunodeficiency, and infection in patients with pathogenic IKZF1 germline variants.

12.
Am J Hum Genet ; 107(3): 381-402, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814065

RESUMO

The SARS-CoV-2 pandemic raises many scientific and clinical questions. These include how host genetic factors affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. We reviewed the literature on host genetic factors related to coronaviruses, systematically focusing on human studies. We identified 1,832 articles of potential relevance. Seventy-five involved human host genetic factors, 36 of which involved analysis of specific genes or loci; aside from one meta-analysis, all were candidate-driven studies, typically investigating small numbers of research subjects and loci. Three additional case reports were described. Multiple significant loci were identified, including 16 related to susceptibility (seven of which identified protective alleles) and 16 related to outcomes (three of which identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Among other studies, 30 involved both human and non-human host genetic factors related to coronavirus, 178 involved study of non-human (animal) host genetic factors related to coronavirus, and 984 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis. Previous human studies have been limited by issues that may be less impactful now, including low numbers of eligible participants and limited availability of advanced genomic methods; however, these may raise additional considerations. We outline key genes and loci from animal and human host genetic studies that may bear investigation in the study of COVID-19. We also discuss how previous studies may direct current lines of inquiry.


Assuntos
Infecções por Coronavirus/genética , Predisposição Genética para Doença , Pneumonia Viral/genética , Animais , Betacoronavirus , COVID-19 , Reservatórios de Doenças/veterinária , Humanos , Pandemias , Receptores Virais/genética , SARS-CoV-2 , Especificidade da Espécie
13.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928709

RESUMO

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Assuntos
Desmetilação do DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dioxigenases/deficiência , Adulto , Sequência de Aminoácidos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Dioxigenases/química , Dioxigenases/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Linhagem , Conformação Proteica , Homologia de Sequência , Adulto Jovem
14.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
15.
Eur J Haematol ; 110(6): 633-638, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36788756

RESUMO

Myeloid and erythroid precursor vacuolation is a common dysplastic finding associated with myeloid malignancies, toxins, drug, and nutritional deficiencies. It has been described as a core morphologic feature in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. We sought to determine the number of cases attributable to VEXAS syndrome in bone marrow biopsies and aspirates (BAMB) reporting myeloid precursor vacuolation. We reviewed 1318 individual BAMB reports from January 2020 to July 2021 where "vacuole(s)," "vacuolation," or "vacuolated" was reported. Bone marrow biopsies with vacuolation confined to blasts or those completed as routine workup prior to stem cell transplant or post induction chemotherapy for AML (acute myeloid leukemia) were excluded. Myeloid and erythroid precursor vacuolation was noted in 219 reports representing 210 patients. The most common etiology was myelodysplastic syndrome (MDS) (38.6%), AML (16.7%), lymphoproliferative disorders and multiple myeloma (7.6%), drug or toxin exposure (5.2%) myeloproliferative neoplasm (MPN) or MPN/MDS overlap syndrome (4.3%). VEXAS syndrome was determined to be the etiology in 2.9% of patients. Two additional cases of VEXAS syndrome with bone marrow biopsies reported in the specified time frame did not explicitly report myeloid or erythroid precursor vacuolation but were identified based on clinical suspicion and repeat BAMB review. Myeloid and erythroid precursor vacuolation is a dysplastic feature attributable to VEXAS syndrome in at least 2.9% of cases. Standardized reporting of vacuolization, triaging of molecular sequencing and optimal treatment of this disorder are critical issues facing those seeing patients with suspected VEXAS syndrome.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Medula Óssea/patologia , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/etiologia , Transtornos Mieloproliferativos/patologia , Leucemia Mieloide Aguda/patologia , Biópsia
16.
J Phys Chem A ; 127(37): 7844-7852, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37670244

RESUMO

This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.

17.
J Allergy Clin Immunol ; 149(1): 432-439.e4, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048852

RESUMO

BACKGROUND: A novel autoinflammatory syndrome was recently described in male patients who harbored somatic mutations in the X-chromosomal UBA1 gene. These patients were characterized by adult-onset, treatment-refractory inflammation with fever, cytopenia, dysplastic bone marrow, vacuoles in myeloid and erythroid progenitor cells, cutaneous and pulmonary inflammation, chondritis, and vasculitis, which is abbreviated as VEXAS. OBJECTIVE: This study aimed to (retrospectively) diagnose VEXAS in patients who had previously been registered as having unclassified autoinflammation. We furthermore aimed to describe clinical experiences with this multifaceted, complex disease. METHODS: A systematic reanalysis of whole-exome sequencing data from a cohort of undiagnosed patients with autoinflammation from academic hospitals in The Netherlands was performed. When no sequencing data were available, targeted Sanger sequencing was applied in cases with high clinical suspicion of VEXAS. RESULTS: A total of 12 male patients who carried mutations in UBA1 were identified. These patients presented with adult-onset (mean age 67 years, range 47-79 years) autoinflammation with systemic symptoms, elevated inflammatory parameters, and multiorgan involvement, most typically involving the skin and bone marrow. Novel features of VEXAS included interstitial nephritis, cardiac involvement, stroke, and intestinal perforation related to treatment with tocilizumab. Although many types of treatment were initiated, most patients became treatment-refractory, with a high mortality rate of 50%. CONCLUSION: VEXAS should be considered in the differential diagnosis of males with adult-onset autoinflammation characterized by systemic symptoms and multiorgan involvement. Early diagnosis can prevent unnecessary diagnostic procedures and provide better prognostic information and more suitable treatment options, including stem cell transplantation.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Síndromes Mielodisplásicas/genética , Dermatopatias Genéticas/genética , Enzimas Ativadoras de Ubiquitina/genética , Adulto , Idade de Início , Idoso , Doenças Hereditárias Autoinflamatórias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/diagnóstico , Países Baixos , Estudos Retrospectivos , Dermatopatias Genéticas/diagnóstico
18.
JAMA ; 329(4): 318-324, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692560

RESUMO

Importance: VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome is a disease with rheumatologic and hematologic features caused by somatic variants in UBA1. Pathogenic variants are associated with a broad spectrum of clinical manifestations. Knowledge of prevalence, penetrance, and clinical characteristics of this disease have been limited by ascertainment biases based on known phenotypes. Objective: To determine the prevalence of pathogenic variants in UBA1 and associated clinical manifestations in an unselected population using a genomic ascertainment approach. Design, Setting, and Participants: This retrospective observational study evaluated UBA1 variants in exome data from 163 096 participants within the Geisinger MyCode Community Health Initiative. Clinical phenotypes were determined from Geisinger electronic health record data from January 1, 1996, to January 1, 2022. Exposures: Exome sequencing was performed. Main Outcomes and Measures: Outcome measures included prevalence of somatic UBA1 variation; presence of rheumatologic, hematologic, pulmonary, dermatologic, and other findings in individuals with somatic UBA1 variation on review of the electronic health record; review of laboratory data; bone marrow biopsy pathology analysis; and in vitro enzymatic assays. Results: In 163 096 participants (mean age, 52.8 years; 94% White; 61% women), 11 individuals harbored likely somatic variants at known pathogenic UBA1 positions, with 11 of 11 (100%) having clinical manifestations consistent with VEXAS syndrome (9 male, 2 female). A total of 5 of 11 individuals (45%) did not meet criteria for rheumatologic and/or hematologic diagnoses previously associated with VEXAS syndrome; however, all individuals had anemia (hemoglobin: mean, 7.8 g/dL; median, 7.5 g/dL), which was mostly macrocytic (10/11 [91%]) with concomitant thrombocytopenia (10/11 [91%]). Among the 11 patients identified, there was a pathogenic variant in 1 male participant prior to onset of VEXAS-related signs or symptoms and 2 female participants had disease with heterozygous variants. A previously unreported UBA1 variant (c.1861A>T; p.Ser621Cys) was found in a symptomatic patient, with in vitro data supporting a catalytic defect and pathogenicity. Together, disease-causing UBA1 variants were found in 1 in 13 591 unrelated individuals (95% CI, 1:7775-1:23 758), 1 in 4269 men older than 50 years (95% CI, 1:2319-1:7859), and 1 in 26 238 women older than 50 years (95% CI, 1:7196-1:147 669). Conclusions and Relevance: This study provides an estimate of the prevalence and a description of the clinical manifestations of UBA1 variants associated with VEXAS syndrome within a single regional health system in the US. Additional studies are needed in unselected and genetically diverse populations to better define general population prevalence and phenotypic spectrum.


Assuntos
Síndromes Mielodisplásicas , Dermatopatias Genéticas , Enzimas Ativadoras de Ubiquitina , Feminino , Humanos , Masculino , Biópsia , Registros Eletrônicos de Saúde , Prevalência , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Enzimas Ativadoras de Ubiquitina/genética , Mutação , Estudos Retrospectivos , Exoma , Pessoa de Meia-Idade , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/epidemiologia , Dermatopatias Genéticas/genética , Estados Unidos/epidemiologia
19.
J Am Chem Soc ; 144(12): 5552-5561, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35296136

RESUMO

Halide perovskites have the potential to disrupt the photovoltaics market based on their high performance and low cost. However, the decomposition of perovskites under moisture, oxygen, and light raises concerns about service lifetime, especially because degradation mechanisms and the corresponding rate laws that fit the observed data have thus far eluded researchers. Here, we report a water-accelerated photooxidation mechanism dominating the degradation kinetics of archetypal perovskite CH3NH3PbI3 in air under >1% relative humidity at 25 °C. From this mechanism, we develop a kinetic model that quantitatively predicts the degradation rate as a function of temperature, ambient O2 and H2O levels, and illumination. Because water is a possible product of dry photooxidation, these results highlight the need for encapsulation schemes that rigorously block oxygen ingress, as product water may accumulate beneath the encapsulant and initiate the more rapid water-accelerated photooxidative decomposition.

20.
J Chem Inf Model ; 62(13): 3169-3179, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35709515

RESUMO

Reinforcement machine learning is implemented to survey a series of model potential energy surfaces and ultimately identify the global minima point. Through sophisticated reward function design, the introduction of an optimizing target, and incorporating physically motivated actions, the reinforcement learning agent is capable of demonstrating advanced decision making. These improved actions allow the agent to successfully converge to an optimal solution more rapidly when compared to an agent trained without the aforementioned modifications. This study showcases the conceptual feasibility of using reinforcement machine learning to solve difficult environments, namely, potential energy surfaces, with multiple, seemingly, correct solutions in the form of local minima regions. Through these results, we hope to encourage extending reinforcement learning to more complicated optimization problems and using these novel techniques to efficiently solve traditionally challenging problems in chemistry.


Assuntos
Aprendizado de Máquina , Reforço Psicológico , Recompensa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa