Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928138

RESUMO

Based on the lack of differences in progression-free and overall survival after a median follow-up of 93 months in our HOVON-65/GMMG-HD4 trial (German part; n = 395) randomizing VAD induction (vincristin/adriamycin/dexamthasone)/tandem-transplantation/thalidomide-maintenance vs. PAD induction (bortezomib/adriamycin/dexamethasone)/tandem transplantation/bortezomib maintenance, we discern how chromosomal aberrations determine long-term prognosis by different patterns of association with proliferation and treatment-dependent response, whether responses achieved by different regimens are equal regarding prognosis, and whether subpopulations of patients could be defined as treatable without upfront "novel agents" in cases of limited resources, e.g., in low- or middle-income countries. Serum parameters and risk factors were assessed in 395 patients. CD138-purified plasma cells were subjected to fluorescence in situ hybridization (n = 354) and gene expression profiling (n = 204). We found chromosomal aberrations to be associated in four patterns with survival, proliferation, and response: deletion (del) del17p13, del8p21, del13q14, (gain) 1q21+, and translocation t(4;14) (all adverse) associate with higher proliferation. Of these, del17p is associated with an adverse response (pattern 1), and 1q21+, t(4;14), and del13q14 with a treatment-dependent better response (pattern 2). Hyperdiploidy associates with lower proliferation without impacting response or survival (pattern 3). Translocation t(11;14) has no association with survival but a treatment-dependent adverse response (pattern 4). Significantly fewer patients reach a near-complete response or better with "conventional" (VAD) vs. bortezomib-based treatment after induction or high-dose melphalan. These patients, however, show significantly better median progression-free and overall survival. Molecularly, patients responding to the two regimens differ in gene expression, indicating distinct biological properties of the responding myeloma cells. Patients with normal renal function (89.4%), low cytogenetic risk (72.5%), or low proliferation rate (37.9%) neither benefit in progression-free nor overall survival from bortezomib-based upfront treatment. We conclude that response level, the treatment by which it is achieved, and molecular background determine long-term prognosis. Chromosomal aberrations are associated in four patterns with proliferation and treatment-dependent responses. Associations with faster and deeper responses can be deceptive in the case of prognostically adverse aberrations 1q21+ and t(4;14). Far from advocating a return to "outdated" treatments, if resources do not permit state-of-the-art-treatment, normal renal function and/or molecular profiling identifies patient subpopulations doing well without upfront "novel agents".


Assuntos
Aberrações Cromossômicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Prognóstico , Adulto , Países em Desenvolvimento , Dexametasona/uso terapêutico , Dexametasona/farmacologia , Bortezomib/uso terapêutico , Bortezomib/farmacologia , Talidomida/uso terapêutico
3.
JCO Precis Oncol ; 8: e2300613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986047

RESUMO

PURPOSE: Given the high heterogeneity in survival for patients with multiple myeloma, it would be clinically useful to quantitatively predict the individual survival instead of attributing patients to two to four risk groups as in current models, for example, revised International Staging System (R-ISS), R2-ISS, or Mayo-2022-score. PATIENTS AND METHODS: Our aim was to develop a quantitative prediction tool for individual patient's 3-/5-year overall survival (OS) probability. We integrated established clinical and molecular risk factors into a comprehensive prognostic model and evaluated and validated its risk discrimination capabilities versus R-ISS, R2-ISS, and Mayo-2022-score. RESULTS: A nomogram for estimating OS probabilities was built on the basis of a Cox regression model. It allows one to translate the individual risk profile of a patient into 3-/5-year OS probabilities by attributing points to each prognostic factor and summing up all points. The nomogram was externally validated regarding discrimination and calibration. There was no obvious bias or overfitting of the prognostic index on the validation cohort. Resampling-based and external evaluation showed good calibration. The c-index of the model was similar on the training (0.76) and validation cohort (0.75) and significantly higher than for the R-ISS (P < .001) or R2-ISS (P < .01). CONCLUSION: In summary, we developed and validated individual quantitative nomogram-based OS prediction. Continuous risk assessment integrating molecular prognostic factors is superior to R-ISS, R2-ISS, or Mayo-2022-score alone.


Assuntos
Bortezomib , Mieloma Múltiplo , Nomogramas , Transplante Autólogo , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Humanos , Bortezomib/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prognóstico , Transplante de Células-Tronco Hematopoéticas , Antineoplásicos/uso terapêutico , Quimioterapia de Indução , Adulto , Taxa de Sobrevida
4.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38598843

RESUMO

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência Celular
5.
J Pathol Clin Res ; 10(2): e354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38284983

RESUMO

This study analyzed whether extended molecular profiling can predict the development of epidermal growth factor receptor (EGFR) gene T790M mutation, which is the most frequent resistance alteration in non-small cell lung cancer (NSCLC) after treatment with the first-/second-generation (1G/2G) EGFR inhibitors (tyrosine kinase inhibitors [TKIs]), but only weakly associated with clinical characteristics. Whole exome sequencing (WES) was performed on pretreatment tumor tissue with matched normal samples from NSCLC patients with (n = 25, detected in tissue or blood rebiopsies) or without (n = 14, negative tissue rebiopsies only) subsequent EGFR p.T790M mutation after treatment with 1G/2G EGFR TKI. Several complex genetic biomarkers were assessed using bioinformatic methods. After treatment with first-line afatinib (44%) or erlotinib/gefitinib (56%), median progression-free survival and overall survival were 12.1 and 33.7 months, respectively. Clinical and tumor genetic characteristics, including age (median, 66 years), sex (74% female), smoking (69% never/light smokers), EGFR mutation type (72% exon 19 deletions), and TP53 mutations (41%) were not significantly associated with T790M mutation (p > 0.05). By contrast, complex biomarkers including tumor mutational burden, the clock-like mutation signature SBS1 + 5, tumor ploidy, and markers of subclonality including mutant-allele tumor heterogeneity, subclonal copy number changes, and median tumor-adjusted variant allele frequency were significantly higher at baseline in tumors with subsequent T790M mutation (all p < 0.05). Each marker alone could predict subsequent development of T790M with an area under the curve (AUC) of 0.72-0.77, but the small number of cases did not allow confirmation of better performance for biomarker combinations in leave-one-out cross-validated logistic regression (AUC 0.69, 95% confidence interval: 0.50-0.87). Extended molecular profiling with WES at initial diagnosis reveals several complex biomarkers associated with subsequent development of T790M resistance mutation in NSCLC patients receiving first-/second-generation TKIs as the first-line therapy. Larger prospective studies will be necessary to define a forecasting model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Idoso , Masculino , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Prospectivos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Genômica , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa