Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097895

RESUMO

MOTIVATION: Molecular complexes play a major role in the regulation of biological pathways. The Biological Pathway Exchange format (BioPAX) facilitates the integration of data sources describing interactions some of which involving complexes. The BioPAX specification explicitly prevents complexes to have any component that is another complex (unless this component is a black-box complex whose composition is unknown). However, we observed that the well-curated Reactome pathway database contains such recursive complexes of complexes. We propose reproductible and semantically rich SPARQL queries for identifying and fixing invalid complexes in BioPAX databases, and evaluate the consequences of fixing these nonconformities in the Reactome database. RESULTS: For the Homo sapiens version of Reactome, we identify 5833 recursively defined complexes out of the 14 987 complexes (39%). This situation is not specific to the Human dataset, as all tested species of Reactome exhibit between 30% (Plasmodium falciparum) and 40% (Sus scrofa, Bos taurus, Canis familiaris, and Gallus gallus) of recursive complexes. As an additional consequence, the procedure also allows the detection of complex redundancies. Overall, this method improves the conformity and the automated analysis of the graph by repairing the topology of the complexes in the graph. This will allow to apply further reasoning methods on better consistent data. AVAILABILITY AND IMPLEMENTATION: We provide a Jupyter notebook detailing the analysis https://github.com/cjuigne/non_conformities_detection_biopax.


Assuntos
Galinhas , Web Semântica , Humanos , Animais , Bovinos , Cães , Bases de Dados Factuais , Plasmodium falciparum
2.
Dev Biol ; 483: 58-65, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34965385

RESUMO

The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 is required for gametogenesis, brain development, erythropoiesis and blood cell enhancer function. The human ortholog is essential for mitosis in cultured cancer cells. Little is known, however, about the role of Exosc10 during embryo development and organogenesis. We generated an Exosc10 knockout model and find that Exosc10-/- mice show an embryonic lethal phenotype. We demonstrate that Exosc10 maternal wild type mRNA is present in mutant oocytes and that the gene is expressed during all stages of early embryogenesis. Furthermore, we observe that EXOSC10 early on localizes to the periphery of nucleolus precursor bodies in blastomeres, which is in keeping with the protein's role in rRNA processing and may indicate a function in the establishment of chromatin domains during initial stages of embryogenesis. Finally, we infer from genotyping data for embryonic days e7.5, e6.5 and e4.5 and embryos cultured in vitro that Exosc10-/- mutants arrest at the eight-cell embryo/morula transition. Our results demonstrate a novel essential role for Exosc10 during early embryogenesis, and they are consistent with earlier work showing that impaired ribosome biogenesis causes a developmental arrest at the morula stage.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mórula/metabolismo , Transdução de Sinais/genética , Animais , Blastômeros/metabolismo , Nucléolo Celular/metabolismo , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Fenótipo , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
3.
BMC Genomics ; 24(1): 647, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891507

RESUMO

BACKGROUND: Feed efficiency is a research priority to support a sustainable meat production. It is recognized as a complex trait that integrates multiple biological pathways orchestrated in and by various tissues. This study aims to determine networks between biological entities to explain inter-individual variation of feed efficiency in growing pigs. RESULTS: The feed conversion ratio (FCR), a measure of feed efficiency, and its two component traits, average daily gain and average daily feed intake, were obtained from 47 growing pigs from a divergent selection for residual feed intake and fed high-starch or high-fat high-fiber diets during 58 days. Datasets of transcriptomics (60 k porcine microarray) in the whole blood and metabolomics (1H-NMR analysis and target gas chromatography) in plasma were available for all pigs at the end of the trial. A weighted gene co-expression network was built from the transcriptomics dataset, resulting in 33 modules of co-expressed molecular probes. The eigengenes of eight of these modules were significantly ([Formula: see text]) or tended to be ([Formula: see text]) correlated to FCR. Great homogeneity in the enriched biological pathways was observed in these modules, suggesting co-expressed and co-regulated constitutive genes. They were mainly enriched in genes participating to immune and defense-related processes, and to a lesser extent, to translation, cell development or learning. They were also generally associated with growth rate and percentage of lean mass. In the whole network, only one module composed of genes participating to the response to substances, was significantly associated with daily feed intake and body adiposity. The plasma profiles in circulating metabolites and in fatty acids were summarized by weighted linear combinations using a dimensionality reduction method. Close association was thus found between a module composed of co-expressed genes participating to T cell receptor signaling and cell development process in the whole blood and related to FCR, and the circulating concentrations of polyunsaturated fatty acids in plasma. CONCLUSION: These systemic approaches have highlighted networks of entities driving key biological processes involved in the phenotypic difference in feed efficiency between animals. Connecting transcriptomics and metabolic levels together had some additional benefits.


Assuntos
Ingestão de Alimentos , Perfilação da Expressão Gênica , Suínos/genética , Animais , Ingestão de Alimentos/genética , Redes Reguladoras de Genes , Análise em Microsséries , Dieta Hiperlipídica , Ração Animal/análise
4.
Bioinformatics ; 38(6): 1685-1691, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35015827

RESUMO

MOTIVATION: Information on protein-protein interactions is collected in numerous primary databases with their own curation process. Several meta-databases aggregate primary databases to provide more exhaustive datasets. In addition to exhaustivity, aggregation contributes to reliability by providing an overview of the various studies and detection methods supporting an interaction. However, interactions listed in different primary databases are partly redundant because some publications reporting protein-protein interactions have been curated by multiple primary databases. Mere aggregation can thus introduce a bias if these redundancies are not identified and eliminated. To overcome this bias, meta-databases rely on the Molecular Interaction ontology that describes interaction detection methods, but they do not fully take advantage of the ontology's rich semantics, which leads to systematically overestimating interaction reproducibility. RESULTS: We propose a precise definition of explicit and implicit redundancy and show that both can be easily detected using Semantic Web technologies. We apply this process to a dataset from the Agile Protein Interactomes DataServer (APID) meta-database and show that while explicit redundancies were detected by the APID aggregation process, about 15% of APID entries are implicitly redundant and should not be taken into account when presenting confidence-related metrics. More than 90% of implicit redundancies result from the aggregation of distinct primary databases, whereas the remaining occurs between entries of a single database. Finally, we build a 'reproducible interactome' with interactions that have been reproduced by multiple methods or publications. The size of the reproducible interactome is drastically impacted by removing redundancies for both yeast (-59%) and human (-56%), and we show that this is largely due to implicit redundancies. AVAILABILITY AND IMPLEMENTATION: Software, data and results are available at https://gitlab.com/nnet56/reproducible-interactome, https://reproducible-interactome.genouest.org/, Zenodo (https://doi.org/10.5281/zenodo.5595037) and NDEx (https://doi.org/10.18119/N94302 and https://doi.org/10.18119/N97S4D). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapeamento de Interação de Proteínas , Semântica , Software , Humanos , Bases de Dados de Proteínas , Reprodutibilidade dos Testes , Mapeamento de Interação de Proteínas/métodos
5.
Bioinformatics ; 37(24): 4889-4891, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34128961

RESUMO

SUMMARY: PAX2GRAPHML is an open-source Python library that allows to easily manipulate BioPAX source files as regulated reaction graphs described in.graphml format. The concept of regulated reactions, which allows connecting regulatory, signaling and metabolic levels, has been used. Biochemical reactions and regulatory interactions are homogeneously described by regulated reactions involving substrates, products, activators and inhibitors as elements. PAX2GRAPHML is highly flexible and allows generating graphs of regulated reactions from a single BioPAX source or by combining and filtering BioPAX sources. Supported by the graph exchange format .graphml, the large-scale graphs produced from one or more data sources can be further analyzed with PAX2GRAPHML or standard Python and R graph libraries. AVAILABILITY AND IMPLEMENTATION: https://pax2graphml.genouest.org.


Assuntos
Bibliotecas , Software , Transdução de Sinais , Biblioteca Gênica
6.
FASEB J ; 35(7): e21718, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105801

RESUMO

Acetaminophen, aspirin, and ibuprofen are mild analgesics commonly used by pregnant women, the sole current recommendation being to avoid ibuprofen from the fifth month of gestation. The nephrotoxicity of these three analgesics is well documented in adults, as is their interference with prostaglandins biosynthesis. Here we investigated the effect of these analgesics on human first trimester kidneys ex vivo. We first evaluated prostaglandins biosynthesis functionality by performing a wide screening of prostaglandin expression patterns in first trimester human kidneys. We demonstrated that prostaglandins biosynthesis machinery is functional during early nephrogenesis. Human fetal kidney explants aged 7-12 developmental weeks were exposed ex vivo to ibuprofen, aspirin or acetaminophen for 7 days, and analyzed by histology, immunohistochemistry, and flow cytometry. This study has revealed that these analgesics induced a spectrum of abnormalities within early developing structures, ranging from cell death to a decline in differentiating glomeruli density. These results warrant caution for the use of these medicines during the first trimester of pregnancy.


Assuntos
Analgésicos/efeitos adversos , Feto/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Feto/metabolismo , Humanos , Glomérulos Renais/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/efeitos dos fármacos , Prostaglandinas/metabolismo
7.
J Neurol Neurosurg Psychiatry ; 92(5): 485-493, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33239440

RESUMO

OBJECTIVE: To identify potential biomarkers of preclinical and clinical progression in chromosome 9 open reading frame 72 gene (C9orf72)-associated disease by assessing the expression levels of plasma microRNAs (miRNAs) in C9orf72 patients and presymptomatic carriers. METHODS: The PREV-DEMALS study is a prospective study including 22 C9orf72 patients, 45 presymptomatic C9orf72 mutation carriers and 43 controls. We assessed the expression levels of 2576 miRNAs, among which 589 were above noise level, in plasma samples of all participants using RNA sequencing. The expression levels of the differentially expressed miRNAs between patients, presymptomatic carriers and controls were further used to build logistic regression classifiers. RESULTS: Four miRNAs were differentially expressed between patients and controls: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p and miR-10a-3p were underexpressed in patients. MiR-34a-5p was also overexpressed in presymptomatic carriers compared with healthy controls, suggesting that miR-34a-5p expression is deregulated in cases with C9orf72 mutation. Moreover, miR-345-5p was also overexpressed in patients compared with presymptomatic carriers, which supports the correlation of miR-345-5p expression with the progression of C9orf72-associated disease. Together, miR-200c-3p and miR-10a-3p underexpression might be associated with full-blown disease. Four presymptomatic subjects in transitional/prodromal stage, close to the disease conversion, exhibited a stronger similarity with the expression levels of patients. CONCLUSIONS: We identified a signature of four miRNAs differentially expressed in plasma between clinical conditions that have potential to represent progression biomarkers for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. This study suggests that dysregulation of miRNAs is dynamically altered throughout neurodegenerative diseases progression, and can be detectable even long before clinical onset. TRIAL REGISTRATION NUMBER: NCT02590276.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Demência Frontotemporal/metabolismo , MicroRNAs/sangue , Adulto , Idoso , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Progressão da Doença , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento do Exoma
8.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720516

RESUMO

The sexual transmission of viruses is responsible for the spread of multiple infectious diseases. Although the human immunodeficiency virus (HIV)/AIDS pandemic remains fueled by sexual contacts with infected semen, the origin of virus in semen is still unknown. In a substantial number of HIV-infected men, viral strains present in semen differ from the ones in blood, suggesting that HIV is locally produced within the genital tract. Such local production may be responsible for the persistence of HIV in semen despite effective antiretroviral therapy. In this study, we used single-genome amplification, amplicon sequencing (env gene), and phylogenetic analyses to compare the genetic structures of simian immunodeficiency virus (SIV) populations across all the male genital organs and blood in intravenously inoculated cynomolgus macaques in the chronic stage of infection. Examination of the virus populations present in the male genital tissues of the macaques revealed compartmentalized SIV populations in testis, epididymis, vas deferens, seminal vesicles, and urethra. We found genetic similarities between the viral strains present in semen and those in epididymis, vas deferens, and seminal vesicles. The contribution of male genital organs to virus shedding in semen varied among individuals and could not be predicted based on their infection or proinflammatory cytokine mRNA levels. These data indicate that rather than a single source, multiple genital organs are involved in the release of free virus and infected cells into semen. These findings have important implications for our understanding of systemic virus shedding and persistence in semen and for the design of eradication strategies to access viral reservoirs.IMPORTANCE Semen is instrumental for the dissemination of viruses through sexual contacts. Worryingly, a number of systemic viruses, such as HIV, can persist in this body fluid in the absence of viremia. The local source(s) of virus in semen, however, remains unknown. To elucidate the anatomic origin(s) of the virus released in semen, we compared viral populations present in semen with those in the male genital organs and blood of the Asian macaque model, using single-genome amplification, amplicon sequencing (env gene), and phylogenetic analysis. Our results show that multiple genital tissues harbor compartmentalized strains, some of them (i.e., from epididymis, vas deferens, and seminal vesicles) displaying genetic similarities with the viral populations present in semen. This study is the first to uncover local genital sources of viral populations in semen, providing a new basis for innovative targeted strategies to prevent and eradicate HIV in the male genital tract.


Assuntos
Genitália Masculina/virologia , Macaca fascicularis/virologia , Sêmen/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral , Animais , Genômica , Macaca fascicularis/genética , Masculino , Filogenia , RNA Viral , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética
9.
Bioinformatics ; 34(12): 2116-2122, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385404

RESUMO

Motivation: At the same time that toxicologists express increasing concern about reproducibility in this field, the development of dedicated databases has already smoothed the path toward improving the storage and exchange of raw toxicogenomic data. Nevertheless, none provides access to analyzed and interpreted data as originally reported in scientific publications. Given the increasing demand for access to this information, we developed TOXsIgN, a repository for TOXicogenomic sIgNatures. Results: The TOXsIgN repository provides a flexible environment that facilitates online submission, storage and retrieval of toxicogenomic signatures by the scientific community. It currently hosts 754 projects that describe more than 450 distinct chemicals and their 8491 associated signatures. It also provides users with a working environment containing a powerful search engine as well as bioinformatics/biostatistics modules that enable signature comparisons or enrichment analyses. Availability and implementation: The TOXsIgN repository is freely accessible at http://toxsign.genouest.org. Website implemented in Python, JavaScript and MongoDB, with all major browsers supported. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados Factuais , Software , Toxicogenética/métodos , Animais , Humanos
10.
RNA Biol ; 16(6): 727-741, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30760080

RESUMO

5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , RNA Longo não Codificante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Genes cdc , Mitose/efeitos dos fármacos , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
11.
Nucleic Acids Res ; 44(20): 9784-9802, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27655631

RESUMO

The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.


Assuntos
Atrazina/efeitos adversos , Exposição Ambiental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Herbicidas/efeitos adversos , Histonas/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Transcrição Gênica/efeitos dos fármacos , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Exposição Materna , Meiose/efeitos dos fármacos , Metilação/efeitos dos fármacos , Camundongos , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Matrizes de Pontuação de Posição Específica , Gravidez , Ligação Proteica , RNA Longo não Codificante/genética , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
12.
Nucleic Acids Res ; 43(W1): W109-16, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25883147

RESUMO

We report the development of the ReproGenomics Viewer (RGV), a multi- and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org.


Assuntos
Gametogênese/genética , Software , Animais , Mineração de Dados , Feminino , Genômica , Humanos , Internet , Masculino , Camundongos , Ratos , Espermatogênese/genética
13.
Nucleic Acids Res ; 43(1): 115-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25477386

RESUMO

It was recently reported that the sizes of many mRNAs change when budding yeast cells exit mitosis and enter the meiotic differentiation pathway. These differences were attributed to length variations of their untranslated regions. The function of UTRs in protein translation is well established. However, the mechanism controlling the expression of distinct transcript isoforms during mitotic growth and meiotic development is unknown. In this study, we order developmentally regulated transcript isoforms according to their expression at specific stages during meiosis and gametogenesis, as compared to vegetative growth and starvation. We employ regulatory motif prediction, in vivo protein-DNA binding assays, genetic analyses and monitoring of epigenetic amino acid modification patterns to identify a novel role for Rpd3 and Ume6, two components of a histone deacetylase complex already known to repress early meiosis-specific genes in dividing cells, in mitotic repression of meiosis-specific transcript isoforms. Our findings classify developmental stage-specific early, middle and late meiotic transcript isoforms, and they point to a novel HDAC-dependent control mechanism for flexible transcript architecture during cell growth and differentiation. Since Rpd3 is highly conserved and ubiquitously expressed in many tissues, our results are likely relevant for development and disease in higher eukaryotes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/metabolismo , Meiose/genética , Mitose/genética , Isoformas de RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Isoformas de RNA/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição , Regiões não Traduzidas , Proteínas de Transporte Vesicular/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , tRNA Metiltransferases
14.
Mol Microbiol ; 96(4): 861-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25708805

RESUMO

BOI1 and BOI2 are paralogs important for the actin cytoskeleton and polar growth. BOI1 encodes a meiotic transcript isoform with an extended 5'-untranslated region predicted to impair protein translation. It is, however, unknown how the isoform is repressed during mitosis, and if Boi1 is present during sporulation. By interpreting microarray data from MATa cells, MATa/α cells, a starving MATα/α control, and a meiosis-impaired rrp6 mutant, we classified BOI1's extended isoform as early meiosis-specific. These results were confirmed by RNA-Sequencing, and extended by a 5'-RACE assay and Northern blotting, showing that meiotic cells induce the long isoform while the mitotic isoform remains detectable during meiosis. We provide evidence via motif predictions, an in vivo binding assay and genetic experiments that the Rpd3/Sin3/Ume6 histone deacetylase complex, which represses meiotic genes during mitosis, also prevents the induction of BOI1's 5'-extended isoform in mitosis by direct binding of Ume6 to its URS1 target. Finally, we find that Boi1 protein levels decline when cells switch from fermentation to respiration and sporulation. The histone deacetylase Rpd3 is conserved, and eukaryotic genes frequently encode transcripts with variable 5'-UTRs. Our findings are therefore relevant for regulatory mechanisms involved in the control of transcript isoforms in multi-cellular organisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Meiose , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Bases , Fermentação/genética , Histona Desacetilases/genética , Meiose/genética , Mitose , Modelos Moleculares , Mutação , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Análise Serial de Tecidos
15.
RNA Biol ; 13(9): 772-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27362276

RESUMO

The origin of replication complex subunit ORC1 is important for DNA replication. The gene is known to encode a meiotic transcript isoform (mORC1) with an extended 5'-untranslated region (5'-UTR), which was predicted to inhibit protein translation. However, the regulatory mechanism that controls the mORC1 transcript isoform is unknown and no molecular biological evidence for a role of mORC1 in negatively regulating Orc1 protein during gametogenesis is available. By interpreting RNA profiling data obtained with growing and sporulating diploid cells, mitotic haploid cells, and a starving diploid control strain, we determined that mORC1 is a middle meiotic transcript isoform. Regulatory motif predictions and genetic experiments reveal that the activator Ndt80 and its middle sporulation element (MSE) target motif are required for the full induction of mORC1 and the divergently transcribed meiotic SMA2 locus. Furthermore, we find that the MSE-binding negative regulator Sum1 represses both mORC1 and SMA2 during mitotic growth. Finally, we demonstrate that an MSE deletion strain, which cannot induce mORC1, contains abnormally high Orc1 levels during post-meiotic stages of gametogenesis. Our results reveal the regulatory mechanism that controls mORC1, highlighting a novel developmental stage-specific role for the MSE element in bi-directional mORC1/SMA2 gene activation, and correlating mORC1 induction with declining Orc1 protein levels. Because eukaryotic genes frequently encode multiple transcripts possessing 5'-UTRs of variable length, our results are likely relevant for gene expression during development and disease in higher eukaryotes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Complexo de Reconhecimento de Origem/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Análise por Conglomerados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de RNA , Esporos Fúngicos/genética
16.
BMC Genomics ; 16: 885, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26518232

RESUMO

BACKGROUND: Environmental factors such as pesticides can cause phenotypic changes in various organisms, including mammals. We studied the effects of the widely used herbicide atrazine (ATZ) on meiosis, a key step of gametogenesis, in male mice. METHODS: Gene expression pattern was analysed by Gene-Chip array. Genome-wide mapping of H3K4me3 marks distribution was done by ChIP-sequencing of testis tissue using Illumina technologies. RT-qPCR was used to validate differentially expressed genes or differential peaks. RESULTS: We demonstrate that exposure to ATZ reduces testosterone levels and the number of spermatozoa in the epididymis and delays meiosis. Using Gene-Chip and ChIP-Seq analysis of H3K4me3 marks, we found that a broad range of cellular functions, including GTPase activity, mitochondrial function and steroid-hormone metabolism, are affected by ATZ. Furthermore, treated mice display enriched histone H3K4me3 marks in regions of strong recombination (double-strand break sites), within very large genes and reduced marks in the pseudoautosomal region of X chromosome. CONCLUSIONS: Our data demonstrate that atrazine exposure interferes with normal meiosis, which affects spermatozoa production.


Assuntos
Atrazina/farmacologia , Epigênese Genética/efeitos dos fármacos , Herbicidas/farmacologia , Meiose/efeitos dos fármacos , Meiose/genética , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Sobrevivência Celular , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Contagem de Espermatozoides , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/sangue
17.
Mol Genet Genomics ; 290(5): 2031-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25957495

RESUMO

Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.


Assuntos
Cromatina/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica , Diploide , Perfilação da Expressão Gênica , Genes Fúngicos , Meiose , Proteólise , RNA Fúngico/genética , Recombinação Genética , Saccharomyces cerevisiae/genética
18.
Biol Reprod ; 92(3): 71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25609838

RESUMO

Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Análise Serial de Proteínas , RNA Mensageiro/genética , Espermatogênese/genética , Sequência de Aminoácidos , Animais , Fertilidade/genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade da Espécie , Fatores de Transcrição/genética
19.
Mol Cell Proteomics ; 11(2): M111.012682, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21997732

RESUMO

The budding yeast Saccharomyces cerevisiae is a major model organism for important biological processes such as mitotic growth and meiotic development, it can be a human pathogen, and it is widely used in the food-, and biotechnology industries. Consequently, the genomes of numerous strains have been sequenced and a very large amount of RNA profiling data is available. Moreover, it has recently become possible to quantitatively analyze the entire yeast proteome; however, efficient and cost-effective high-throughput protein profiling remains a challenge. We report here a new approach to direct and label-free large-scale yeast protein identification using a tandem buffer system for protein extraction, two-step protein prefractionation and enzymatic digestion, and detection of peptides by iterative mass spectrometry. Our profiling study of diploid cells undergoing rapid mitotic growth identified 86% of the known proteins and its output was found to be widely concordant with genome-wide mRNA concentrations and DNA variations between yeast strains. This paves the way for comprehensive and straightforward yeast proteome profiling across a wide variety of experimental conditions.


Assuntos
Perfilação da Expressão Gênica , Mitose/fisiologia , Proteoma/análise , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , DNA Fúngico/análise , DNA Fúngico/genética , Humanos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Bioinformatics ; 28(1): 84-90, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22080466

RESUMO

MOTIVATION: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. RESULTS: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein-protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. AVAILABILITY: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 CONTACT: brun@tagc.univ-mrs.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapas de Interação de Proteínas , Software , Análise por Conglomerados , Biologia Computacional/métodos , Humanos , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa