Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Fish Dis ; : e13985, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923541

RESUMO

Fish meal (FM) replacement is essential for the sustainable expansion of aquaculture. This study focussed on the feasibility of replacing FM with a single-cell protein (SCP) derived from methanotrophic bacteria (Methylococcus capsulatus, Bath) in barramundi fry (Lates calcarifer). Three isonitrogenous and isoenergetic diets were formulated with 0%, 6.4% and 12.9% inclusion of the SCP, replacing FM by 0%, 25% and 50%. Barramundi fry (initial body weight 2.5 ± 0.1 g) were fed experimental diets for 21 days to assess growth performance, gut microbiome composition and gut histopathology. Our findings revealed that both levels of SCP inclusion induced detrimental effects in barramundi fry, including impaired growth and reduced survival compared with the control group (66.7% and 71.7% survival in diets replacing FM with SCP by 25% and 50%, respectively; p < .05). Both dietary treatments presented mild necrotizing enteritis with subepithelial oedema and accumulation of PAS positive, diastase resistant droplets within hepatocytes (ceroid hepatopathy) and pancreatic atrophy. Microbiome analysis revealed a marked shift in the gut microbial community with the expansion of potential opportunistic bacteria in the genus Aeromonas. Reduced overall performance in the highest inclusion level (50% SCP) was primarily associated with reduced feed intake, likely related to palatability issues, albeit pathological changes observed in gut and liver may also play a role. Our study highlights the importance of meticulous optimization of SCP inclusion levels in aquafeed formulations, and the need for species and life-stage specific assessments to ensure the health and welfare of fish in sustainable aquaculture practices.

2.
J Fish Dis ; 46(7): 751-766, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966382

RESUMO

Most diseases in aquaculture are caused by opportunistic pathogens. One of them, Vibrio harveyi, is a widespread Gram-negative bacterium that has become an important pathogen of aquatic species in marine environments. Here, we propose the use of the causal pie model as a framework to conceptualize the causation of vibriosis in juvenile barramundi (Lates calcarifer) and to establish an effective challenge model. In the model, a sufficient cause, or the causal pie, is a constellation of component causes that lead to an outcome (e.g. vibriosis). In the pilot study, a high cumulative mortality (63.3% ± 10.0%, mean ± SE) was observed when V. harveyi was administered by intraperitoneal injection using a high challenge dose [107 colony-forming units (CFU) fish-1 ], but low or no mortality was observed in fish subject to cold stress or fish with intact skin when challenged by immersion. We, therefore, tested the use of a skin lesion (induced with a 4-mm biopsy punch) combined with cold temperature stress to induce vibriosis following the causal pie model. After challenge, fish were immediately subject to cold stress (22°C) or placed at an optimal temperature of 30°C. All groups were challenged with 108 CFU mL-1 for 60 min. A considerably higher mortality level (72.7% ± 13.9%) was observed in fish challenged with both a skin lesion and cold stress compared with mortality in fish only having a skin lesion (14.6% ± 2.8%). V. harveyi was re-isolated from all moribund fish and was detected by species-specific real-time PCR in gills, head kidney and liver, regardless of challenge treatment confirming vibriosis as the cause of disease. Parenchymal tissues had histopathological changes consistent with vibriosis. Whole-genome sequence (WGS) is provided for the Vibrio harveyi isolate examined in this study. Overall, the causal pie model was a useful framework to conceptualize the design of the experimental challenge model, in which both cold stress and skin damage were identified as component causes of vibriosis with high mortality. This conceptual framework can be applied to other opportunistic pathogens in aquaculture or to the study of co-infections in fish.


Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Temperatura Baixa , Temperatura , Resposta ao Choque Frio , Projetos Piloto , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrioses/microbiologia , Peixes
3.
Dis Aquat Organ ; 128(2): 105-116, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29733025

RESUMO

Ranaviruses are globally emerging pathogens negatively impacting wild and cultured fish, amphibians, and reptiles. Although conventional and diagnostic real-time PCR (qPCR) assays have been developed to detect ranaviruses, these assays often have not been tested against the known diversity of ranaviruses. Here we report the development and partial validation of a TaqMan real-time qPCR assay. The primers and TaqMan probe targeted a conserved region of the major capsid protein (MCP) gene. A series of experiments using a 10-fold dilution series of Frog virus 3 (FV3) MCP plasmid DNA revealed linearity over a range of 7 orders of magnitude (107-101), a mean correlation coefficient (R2) of >0.99, and a mean efficiency of 96%. The coefficient of variation of intra- and inter-assay variability ranged from <0.1-3.5% and from 1.1-2.3%, respectively. The analytical sensitivity was determined to be 10 plasmid copies of FV3 DNA. The qPCR assay detected a panel of 33 different ranaviral isolates originating from fish, amphibian, and reptile hosts from all continents excluding Africa and Antarctica, thereby representing the global diversity of ranaviruses. The assay did not amplify highly divergent ranaviruses, members of other iridovirus genera, or members of the alloherpesvirus genus Cyprinivirus. DNA from fish tissue homogenates previously determined to be positive or negative for the ranavirus Epizootic hematopoietic necrosis virus by virus isolation demonstrated a diagnostic sensitivity of 95% and a diagnostic specificity of 100%. The reported qPCR assay provides an improved expedient diagnostic tool and can be used to elucidate important aspects of ranaviral pathogenesis and epidemiology in clinically and sublinically affected fish, amphibians, and reptiles.


Assuntos
Ranavirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Sequência de Bases , Proteínas do Capsídeo/isolamento & purificação , RNA Viral/genética , Ranavirus/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Aquat Anim Health ; 28(2): 122-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27229663

RESUMO

The ranavirus epizootic hematopoietic necrosis virus (EHNV) is endemic to Australia and is listed by the Office International des Epizooties. Clinical outbreaks have only been observed in wild populations of Redfin Perch Perca fluviatilis (also known as Eurasian Perch) and farmed populations of Rainbow Trout Oncorhynchus mykiss. The initial outbreaks of EHNV describe all age-classes of Redfin Perch as being susceptible and can lead to epidemic fish kills. Subsequently, experimental challenge studies using either cohabitation with the virus or injection exposures resulted in mixed susceptibilities across various age-groupings of Redfin Perch. We used an experimental bath challenge model to investigate the susceptibility of Redfin Perch collected from areas with and without a history of EHNV outbreaks. The median survival time for fish from Blowering Dam in New South Wales, a zone with a history of EHNV outbreaks, was 35 d, compared with fish from other areas, which had a median survival between 12 and 28 d postexposure. Redfin Perch from Blowering Dam demonstrated an increased mortality associated with epizootic hematopoietic necrosis up to approximately day 14 after exposure, and then there was a significantly reduced risk of mortality until the end of the trial compared with all other fish. Redfin Perch from Blowering Dam had markedly decreased susceptibility to EHNV, and less than 40% became infected following a bath challenge. In contrast, Redfin Perch from neighboring (e.g., Bethungra Dam and Tarcutta Creek) and distant water bodies (e.g., in Western Australia) with no previous history of EHNVdisplayed moderate to high susceptibility when given a bath challenge. Potential factors for the observed changes in the host-pathogen relationship include intense positive selection pressure for resistant fish following epizootic hematopoietic necrosis outbreaks and subsequent attenuation of the virulence of the virus in resistant fish. Received August 22, 2015; accepted February 13, 2016.


Assuntos
Infecções por Vírus de DNA/veterinária , Suscetibilidade a Doenças , Doenças dos Peixes/virologia , Percas , Ranavirus/patogenicidade , Animais , Austrália/epidemiologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/imunologia
6.
PLoS One ; 18(2): e0281292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735738

RESUMO

Megalocytiviruses (MCVs) are double-stranded DNA viruses known to infect important freshwater and marine fish species in the aquaculture, food, and ornamental fish industries worldwide. Infectious spleen and kidney necrosis virus (ISKNV) is the type species within the genus Megalocytivirus that causes red seabream iridoviral disease (RSIVD) which is a reportable disease to the World Animal Health Organization (WOAH). To better control the transboundary spread of this virus and support WOAH reporting requirements, we developed and partially validated a TaqMan real-time qPCR assay (ISKNV104R) to detect all three genotypes of ISKNV, including the two genotypes that cause RSIVD. Parameters averaged across 48 experiments used a 10-fold dilution series of linearized plasmid DNA (107-101 copies), carrying a fragment of the three-spot gourami iridovirus (TSGIV) hypothetical protein revealed that the assay was linear over 7 orders of magnitude (107-101), a mean efficiency of 99.97 ± 2.92%, a mean correlation coefficient of 1.000 ± 0.001, and a limit of detection (analytical sensitivity) of ≤10 copies of TSGIV DNA. The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was evaluated and compared to other published assays using a panel of 397 samples from 21 source populations with different prevalence of ISKNV infection (0-100%). The diagnostic sensitivity and specificity for the ISKNV104R qPCR assay was 91.99% (87.28-95.6; 95% CI) and 89.8% (83.53-94.84). The latent class analysis showed that the ISKNV104R qPCR assay had similar diagnostic sensitivities and specificities with overlapping confidence limits compared to a second TaqMan qPCR assay and a SYBR green assay. This newly developed TaqMan assay represents a partially validated qPCR assay for the detection of the three genotypes of the species ISKNV. The ISKNV104R qPCR assay once fully validated, will serve as an improved diagnostic tool that can be used for ISKNV surveillance efforts and diagnosis in subclinical fish to prevent further spread of MCVs throughout the aquaculture and ornamental fish industries.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Perciformes , Dourada , Animais , Iridoviridae/genética , Doenças dos Peixes/epidemiologia , Perciformes/genética , Dourada/genética , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Genótipo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real
7.
Appl Environ Microbiol ; 77(5): 1878-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239548

RESUMO

Three direct fluorescent-antibody staining assay kits for the detection of zoonotic Cryptosporidium species were used to detect Cryptosporidium molnari from Murray cod, and the cryptosporidia were characterized by using small-subunit (SSU) ribosomal DNA (rDNA). To facilitate rapid diagnosis of infection, this study demonstrated that all three kits detected fresh C. molnari and two kits detected formalin-fixed oocysts.


Assuntos
Criptosporidiose/veterinária , Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Doenças dos Peixes/parasitologia , Gadiformes/parasitologia , Parasitologia/métodos , Animais , Anticorpos Antiprotozoários , Criptosporidiose/parasitologia , Cryptosporidium/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Técnica Direta de Fluorescência para Anticorpo , Genes de RNAr , Dados de Sequência Molecular , Oocistos/classificação , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Coloração e Rotulagem/métodos
8.
Dis Aquat Organ ; 91(3): 257-62, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-21133325

RESUMO

The objective of the present study was to evaluate the in vitro toxicity of bithionol and bithionol sulphoxide to Neoparamoeba spp., the causative agent of amoebic gill disease (AGD). The current treatment for AGD-affected Atlantic salmon involves bathing sea-caged fish in freshwater for a minimum of 3 h, a labour-intensive and costly exercise. Previous attempts to identify alternative treatments have suggested bithionol as an alternate therapeutic, but extensive in vitro efficacy testing has not yet been done. In vitro toxicity to Neoparamoeba spp. was examined using amoebae isolated from the gill of AGD-affected Atlantic salmon and exposing the parasites to freshwater, alumina (10 mg l(-1)), seawater, bithionol or bithionol sulphoxide at nominal concentrations of 0.1, 0.5, 1, 5 and 10 mg l(-1) in seawater. The numbers of viable amoebae were counted using the trypan blue exclusion method at 0, 24, 48 and 72 h. Both bithionol and bithionol sulphoxide demonstrated in vitro toxicity to Neoparamoeba spp. at all concentrations examined (0.1 to 10 mg l(-1) over 72 h), with a comparable toxicity to freshwater observed for both chemicals at concentrations > 5 mg l(-1) following a 72 h treatment. Freshwater remained the most effective treatment, with only 6% viable amoebae seen after 24 h and no viable amoebae observed after 48 h.


Assuntos
Amebozoários/efeitos dos fármacos , Bitionol/análogos & derivados , Bitionol/toxicidade , Doenças dos Peixes/parasitologia , Salmo salar , Animais , Relação Dose-Resposta a Droga , Fatores de Tempo
9.
Pathogens ; 9(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708765

RESUMO

A cross-sectional survey was used to estimate the prevalence of infections with the Infectious spleen and kidney necrosis virus (ISKNV, Megalocytivirus), nervous necrosis virus (NNV, Betanodavirus), and infestations with ectoparasites during the rainy season in juvenile grouper (Epinephelus spp.) farmed in Aceh, Indonesia. The survey was intended to detect aquatic pathogens present at 10% prevalence with 95% confidence, assuming 100% sensitivity and specificity using a sample size of 30 for each diagnostic test. Eight populations of grouper from seven farms were sampled. Additional targeted sampling was conducted for populations experiencing high mortality. Infection with NNV was detected at all farms with seven of the eight populations being positive. The apparent prevalence for NNV ranged from 0% (95% CI: 0-12) to 73% (95% CI: 54-88). All of the fish tested from the targeted samples (Populations 9 and 10) were positive for NNV and all had vacuolation of the brain and retina consistent with viral nervous necrosis (VNN). Coinfections with ISKNV were detected in five populations, with the highest apparent prevalence being 13% (95% CI: 4-31%). Trichodina sp., Cryptocaryon irritans and Gyrodactylus sp. were detected at three farms, with 66% to 100% of fish being infested. Hybrid grouper sourced from a hatchery were 5.4 and 24.9 times more likely to have a NNV infection and a higher parasite load compared to orange-spotted grouper collected from the wild (p < 0.001). This study found that VNN remains a high-impact disease in grouper nurseries in Aceh, Indonesia.

10.
Viruses ; 11(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939801

RESUMO

Epizootic haematopoietic necrosis virus (EHNV) was originally detected in Victoria, Australia in 1984. It spread rapidly over two decades with epidemic mortality events in wild redfin perch (Perca fluviatilis) and mild disease in farmed rainbow trout (Oncorhynchus mykiss) being documented across southeastern Australia in New South Wales (NSW), the Australian Capital Territory (ACT), Victoria, and South Australia. We conducted a survey for EHNV between July 2007 and June 2011. The disease occurred in juvenile redfin perch in ACT in December 2008, and in NSW in December 2009 and December 2010. Based on testing 3622 tissue and 492 blood samples collected from fish across southeastern Australia, it was concluded that EHNV was most likely absent from redfin perch outside the endemic area in the upper Murrumbidgee River catchment in the Murray⁻Darling Basin (MDB), and it was not detected in other fish species. The frequency of outbreaks in redfin perch has diminished over time, and there have been no reports since 2012. As the disease is notifiable and a range of fish species are known to be susceptible to EHNV, existing policies to reduce the likelihood of spreading out of the endemic area are justified.


Assuntos
Infecções por Vírus de DNA/veterinária , Surtos de Doenças , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Ranavirus/isolamento & purificação , Topografia Médica , Estruturas Animais/virologia , Animais , Austrália/epidemiologia , Sangue/virologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia
11.
Transbound Emerg Dis ; 66(6): 2318-2328, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31286667

RESUMO

Movements of large volumes and species varieties make the ornamental fish industry a high-risk pathway for the transfer of aquatic pathogens to new geographical regions and naïve hosts, potentially resulting in emergency disease events. Infectious spleen and kidney necrosis virus (genus Megalocytivirus) is considered exotic to Australia despite documented incursions since 2003. There are current import controls requiring freedom from infection for entry to Australia. The objective was to evaluate the effect of tissue pooling strategies for qPCR testing using a SYBR® assay for freedom from ISKNV at 2% expected prevalence with 95% confidence. Tissue homogenates from apparently healthy imported ornamental fish were tested as individuals and in pools of 5 and 10. Analytical sensitivity of the qPCR assay was reduced by two orders of magnitude when the nucleic acid extraction process was accounted for by spiking the plasmid in fish tissues and compared with molecular grade water. Diagnostic sensitivity of the assay was substantially reduced when testing tissues in pools compared with individual testing. For Population 1 (66% positive for ISKNV with moderate viral loads), surveillance sensitivity was only achieved using individual testing. For Population 2 (100% positive ISKNV with high viral loads), surveillance sensitivity was achieved using 260 fish in pools of 10 for a total of 26 tests or 200 fish in pools of 5 for 40 tests. Surveillance sensitivity could be maximized even when there was a reduction in pooled diagnostic sensitivity compared with diagnostic sensitivity for individual fish by increasing the sample size. Pooled sensitivity was influenced by the prevalence and variable virus load among fish with subclinical infections. Pooled testing is highly effective when the prevalence is >10% which should be informed by prior knowledge or pooling can be used for a screening test to rapidly identify populations with high prevalence.


Assuntos
Doenças dos Peixes/epidemiologia , Iridoviridae/isolamento & purificação , Vigilância da População/métodos , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Filogenia , Prevalência , Carga Viral
12.
Adv Parasitol ; 100: 239-281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29753340

RESUMO

Goldfish, Carassius auratus Linnaeus, 1758, are immensely popular ornamental cyprinid fish, traded in more than 100 countries. For more than 500 years, human translocation has facilitated the spread of goldfish globally, which has enabled numerous and repeated introductions of parasite taxa that infect them. The parasite fauna assemblage of goldfish is generally well documented, but few studies provide evidence of parasite coinvasion following the release of goldfish. This review provides a comprehensive synopsis of parasites that infect goldfish in farmed, aquarium-held, native, and invasive populations globally and summarises evidence for the cointroduction and coinvasion of goldfish parasites. More than 113 species infect goldfish in their native range, of which 26 species have probably coinvaded with the international trade of goldfish. Of these, Schyzocotyle acheilognathi (Cestoda: Bothriocephalidae), Ichthyophthirius multifiliis (Ciliophora: Ichthyophthiriidae), Argulus japonicus (Crustacea: Argulidae), Lernaea cyprinacea (Crustacea: Ergasilidae), Dactylogyrus anchoratus, Dactylogyrus vastator and Dactylogyrus formosus (Monogenea: Dactylogyridae) are common to invasive goldfish populations in more than four countries and are considered a high risk of continued spread. Coinvasive parasites include species with direct and complex life cycles, which have successfully colonised new environments through utilisation of either new native hosts or suitable invasive hosts. Specifically, I. multifiliis, A. japonicus and L. cyprinacea can cause harm to farmed freshwater fish species and are important parasites to consider for biosecurity. These species may threaten other aquatic animal industries given their low host specificity and adaptable life histories. Future attention to biosecurity, management and border detection methods could limit the continued spread of exotic parasites from the ornamental trade of goldfish.


Assuntos
Doenças Transmissíveis Importadas/veterinária , Doenças dos Peixes/parasitologia , Doenças dos Peixes/transmissão , Carpa Dourada/parasitologia , Animais , Doenças Transmissíveis Importadas/parasitologia , Indústrias/estatística & dados numéricos , Espécies Introduzidas
13.
Anim Health Res Rev ; 8(1): 59-68, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17692143

RESUMO

Since it was first reported in 1987 at a hatchery in British Columbia, Loma salmonae has become increasingly important as an emerging parasite affecting the Canadian salmonid aquaculture industry. L. salmonae causes Microsporidial Gill Disease of Salmon (MGDS) in farmed Pacific salmonids, Oncorhynchus spp., resulting in respiratory distress, secondary infections and high mortality rates. In the last decade, laboratory studies have identified key transmission factors for this disease and described the pathogenesis of MGDS. L. salmonae enters the host via the gut, where it injects sporoplasm into a host cell, which then migrates to the heart for a two-week merogony-like phase, followed by a macrophage-mediated transport of the parasite to the gill, with a final development stage of a spore-laden xenoma within the endothelial and pillar cells. Xenoma rupture triggers a cascade of inflammatory events leading to severe, persistent, and extensive proliferative branchitis. The development of robust and reliable experimental challenge models using several exposure methods in marine and freshwater environments with several fish hosts, is a primary reason for the success of scientific research surrounding L. salmonae. To date, demonstrated factors affecting MGDS transmission include host species, strain and size, the length of contact time between naïve and infected fish, water temperature and flow rates.


Assuntos
Doenças dos Peixes/parasitologia , Microsporídios/patogenicidade , Microsporidiose/veterinária , Animais , Doenças dos Peixes/transmissão , Brânquias/parasitologia , Interações Hospedeiro-Parasita , Microsporidiose/parasitologia , Infecções Protozoárias em Animais/parasitologia , Salmo salar
14.
Vet Parasitol ; 144(3-4): 197-207, 2007 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-17129675

RESUMO

This study examined the toxicity of bithionol to Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in fresh- and seawater and the efficacy of bithionol as a 1h seawater bath treatment for amoebic gill disease (AGD). To examine toxicity, fish were bathed for 1, 3 and 6h in bithionol, an anti-protozoal at 0, 1, 5, 10, 25 and 35mgL(-1) with toxicity determined by time to morbidity. Efficacy was examined by bathing AGD-affected Atlantic salmon and rainbow trout for 1h at bithionol concentrations of 1-25mgL(-1). Efficacy was determined by examining gill amoeba counts and identifying percent lesioned gill filaments at 1 and 24h after bath exposure to bithionol. For both species, bithionol was determined to be toxic at 25 and 35mgL(-1) exhibiting median lethal times (LT50s) ranging from 21 to 84min. Morbidity occurred in the 5 and 10mgL(-1) treatments, however, due to sampling regime there were not enough fish available to calculate LT50s. Only bithionol at 1mgL(-1) was considered non-toxic with no signs of morbidity. Bithionol was more toxic in seawater than freshwater and had no acute effects on gill Na+/K+ ATPase and succinic dehydrogenase, or plasma osmolality and chloride concentration. Bithionol at 1mgL(-1) reduced percent lesioned gill filaments in Atlantic salmon and rainbow trout by 33 and 27 per cent, respectively, compared to the seawater control. Similarly, numbers of amoeba were reduced by 33 and 43 per cent for Atlantic salmon and rainbow trout, respectively, when compared to the seawater control. Furthermore, bithionol reduced percent lesioned gill filaments as much as did the current industry standard of freshwater. This study demonstrated that a 1h seawater bath containing 1mgL(-1) bithionol could be an improvement to the current method of treatment for AGD-affected Atlantic salmon and rainbow trout.


Assuntos
Amebíase/veterinária , Amebicidas/uso terapêutico , Bitionol/uso terapêutico , Doenças dos Peixes/tratamento farmacológico , Oncorhynchus mykiss/parasitologia , Salmo salar/parasitologia , Amebíase/tratamento farmacológico , Amebicidas/administração & dosagem , Amebicidas/efeitos adversos , Amébidos/efeitos dos fármacos , Animais , Bitionol/administração & dosagem , Bitionol/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação/veterinária , Feminino , Doenças dos Peixes/parasitologia , Brânquias/efeitos dos fármacos , Brânquias/parasitologia , Masculino
15.
Virology ; 511: 320-329, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28818331

RESUMO

Low genetic diversity of Epizootic haematopoietic necrosis virus (EHNV) was determined for the complete genome of 16 isolates spanning the natural range of hosts, geography and time since the first outbreaks of disease. Genomes ranged from 125,591-127,487 nucleotides with 97.47% pairwise identity and 106-109 genes. All isolates shared 101 core genes with 121 potential genes predicted within the pan-genome of this collection. There was high conservation within 90,181 nucleotides of the core genes with isolates separated by average genetic distance of 3.43 × 10-4 substitutions per site. Evolutionary analysis of the core genome strongly supported historical epidemiological evidence of iatrogenic spread of EHNV to naïve hosts and establishment of endemic status in discrete ecological niches. There was no evidence of structural genome reorganization, however, the complement of non-core genes and variation in repeat elements enabled fine scale molecular epidemiological investigation of this unpredictable pathogen of fish.


Assuntos
Surtos de Doenças , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Variação Genética , Epidemiologia Molecular , Ranavirus/classificação , Ranavirus/genética , Animais , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças Endêmicas , Peixes , Genes Virais , Genoma Viral , Doença Iatrogênica/epidemiologia , Doença Iatrogênica/veterinária , Ranavirus/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Sintenia
16.
Prev Vet Med ; 122(1-2): 181-94, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452601

RESUMO

The movement of ornamental fish through international trade is a major factor for the transboundary spread of pathogens. In Australia, ornamental fish which may carry dwarf gourami iridovirus (DGIV), a strain of Infectious spleen and kidney necrosis virus (ISKNV), have been identified as a biosecurity risk despite relatively stringent import quarantine measures being applied. In order to gain knowledge of the potential for DGIV to enter Australia, imported ornamental fish were sampled prior to entering quarantine, during quarantine, and post quarantine from wholesalers and aquatic retail outlets in Australia. Samples were tested by quantitative polymerase chain reaction (qPCR) for the presence of megalocytivirus. Farmed and wild ornamental fish were also tested. Megalocytivirus was detected in ten of fourteen species or varieties of ornamental fish. Out of the 2086 imported gourami tested prior to entering quarantine, megalocytivirus was detected in 18.7% of fish and out of the 51 moribund/dead ornamental fish tested during the quarantine period, 68.6% were positive for megalocytivirus. Of fish from Australian wholesalers and aquatic retail outlets 14.5% and 21.9%, respectively, were positive. Out of 365 farmed ornamental fish, ISKNV-like megalocytivirus was detected in 1.1%; these were Platy (Xiphophorus maculatus). Megalocytivirus was not detected in free-living breeding populations of Blue gourami (Trichopodus trichopterus) caught in Queensland. This study showed that imported ornamental fish are vectors for DGIV and it was used to support an import risk analysis completed by the Australian Department of Agriculture. Subsequently, the national biosecurity policy was revised and from 1 March 2016, a health certification is required for susceptible families of fish to be free of this virus prior to importation.


Assuntos
Animais Domésticos , Ciprinodontiformes , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/epidemiologia , Iridoviridae/isolamento & purificação , Quarentena/veterinária , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Austrália/epidemiologia , Sequência de Bases , Comércio , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Filogenia , Medição de Risco , Alinhamento de Sequência/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Dis Aquat Organ ; 58(2-3): 185-91, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15109141

RESUMO

Previous studies have modelled the relationship between water temperature and the rate of sporulation as defined by xenoma formation during microsporidial gill disease (MGD) in salmon caused by Loma salmonae. Although offering insight into the epidemiology of MGD, a key unexplored area is the role of temperature in the rate of xenoma dissolution including spore release into the environment, and this is crucial to our ability to model horizontal transmission of MGD within confined net-pen populations of farmed salmon. Results from a previous trial suggested that xenoma dissolution may be dramatically hastened as water temperature declines, thus introducing a critical anomaly into any predictive exercise. The data generated herein was evaluated using the statistics of survival analysis to re-establish the baseline relationship of xenoma formation and dissolution relative to water temperature and to compare these results with those of previous studies. We infected 30 individuals of Oncorhynchus mykiss (Walbaum) with macerated xenoma-laden gill material, and afterwards allocated them to tanks with water temperatures of 11, 15, or 19 degrees C and monitored them through a disease cycle. Xenoma onset and clearance times were similar to previous findings with both events being accelerated at higher water temperatures, thereby suggesting a similar temperature response in the current strain to those used in previous studies. Another group of 45 fish was infected with L. salmonae and held at 15 degrees C until xenomas formed, and were subsequently shifted to 11, 15, or 19 degrees C. The median xenoma dissolution time in these tanks was 49, 35 and 28 d, respectively, similar to rates observed when water temperature remained constant. Thus we rejected the hypothesis that a sudden change in water temperature triggers rapid or anomalous xenoma dissolution.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Doenças dos Peixes/parasitologia , Microsporídios/fisiologia , Microsporidiose/veterinária , Oncorhynchus mykiss/parasitologia , Esporos/fisiologia , Temperatura , Animais , Aquicultura , Doenças dos Peixes/transmissão , Brânquias/parasitologia , Microsporidiose/parasitologia , Microsporidiose/transmissão , Ilha do Príncipe Eduardo , Análise de Sobrevida
19.
J Aquat Anim Health ; 25(1): 66-76, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23339340

RESUMO

The ranavirus, epizootic hematopoietic necrosis virus (EHNV), is endemic to southern Australia with natural outbreaks resulting in mass mortality events in wild Redfin Perch Perca fluviatilis (also known as Eurasian Perch) and less severe disease in farmed Rainbow Trout Oncorhynchus mykiss. To further investigate the host range for EHNV, 12 ecologically or economically important freshwater fish species from southeastern Australia were exposed experimentally to the virus. A bath-challenge model at 18 ± 3°C was employed with limited use of intraperitoneal inoculation to determine if a species was likely to be susceptible to EHNV. Of the species tested, Murray-Darling Rainbowfish Melanotaenia fluviatilis and Dewfish Tandanus tandanus (also known as Freshwater Catfish) were considered to be potentially susceptible species. EHNV was isolated from approximately 7% of surviving Eastern Mosquitofish Gambusia holbrooki, indicating this widespread alien fish species is a potential carrier. The infection of Silver Perch Bidyanus bidyanus and Macquarie Perch Macquaria australasica and the lack of infection in Murray Cod Maccullochella peelii peelii and Golden Perch Macquaria ambigua ambigua after exposure to EHNV via water confirmed earlier data from Langdon (1989). Five other species of native fish were potentially not susceptible to the virus or the fish were able to recover during the standard 35-d postchallenge observation period. Overall, it appeared that EHNV was less virulent in the present experimental model than in previous studies, but the reasons for this were not identified. Received May 21, 2012; accepted November 1, 2012.


Assuntos
Doenças dos Peixes/virologia , Água Doce , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae/veterinária , Animais , Austrália/epidemiologia , Peixes , Vírus da Doença Hemorrágica Epizoótica/patogenicidade , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Especificidade da Espécie
20.
Fish Shellfish Immunol ; 21(2): 170-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16464612

RESUMO

Resistance to re-infection of rainbow trout to Loma salmonae, a microsporidian gill parasite has been previously documented and this study examined how rapidly this resistance develops. Naive rainbow trout were inoculated intraperitoneally (IP) with an inactivated spore-based vaccine and were then given an oral challenge with a high dose of L. salmonae spores at various weeks after being vaccinated. Non-vaccinated naive fish (exposed group) were challenged alongside of each group of vaccinated fish to ensure that the challenges were relatively standardised. In each group of fish, four weeks after the challenge, numbers of xenomas were counted on a gill arch for all fish. Vaccinated trout were completely resistant to a L. salmonae challenge six weeks after vaccination, although the onset of resistance began at approximately week 3, as observed with a reduction in the percent infected and xenoma intensity. The maximum percent infected for the vaccinated fish was 83% following a challenge two weeks following vaccination, whereas for the exposed group the maximum prevalence of 100% was reached several times. With continued research, a spore-based vaccine for L. salmonae has the potential to become the first commercially available parasite vaccine for fish.


Assuntos
Doenças dos Peixes/imunologia , Loma/imunologia , Microsporidiose/veterinária , Oncorhynchus mykiss/imunologia , Vacinas/imunologia , Administração Oral , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/prevenção & controle , Pesqueiros , Brânquias/parasitologia , Microsporidiose/imunologia , Microsporidiose/prevenção & controle , Oncorhynchus mykiss/parasitologia , Organismos Livres de Patógenos Específicos , Esporos de Protozoários/imunologia , Fatores de Tempo , Vacinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa