Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(4): 3055-3061, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30689354

RESUMO

High-speed multiwavelength fluorescence measurements are of paramount importance in microfluidic analytics. However, multicolor detection requires an intricate arrangement of multiple detectors and meticulously aligned filters and dichroic beamsplitters that counteract the simplicity, versatility, and low cost of microfluidic approaches. To break free from the restrictions of optical setup complexity, we introduce a simpler single-sensor setup based on laser-frequency modulation and frequency-division multiplexing (FDM). We modulate lasers to excite the sample with four non-overlapping frequency signals. A single photomultiplier tube detects all the modulated emitted light collected by an optical fiber in the microfluidic chip. Signal demodulation is performed with a lock-in amplifier separating the emitted light into four color channels in real time. This approach not only reduces complexity and provides setup flexibility but also results in improved signal quality and, thus, higher signal-to-noise ratios that translate into increased sensitivity. To validate the setup for high-throughput biological applications, we measured multiple signals from different microorganisms and fluorescently encoded droplet populations for exploring beneficial or antagonistic roles in microbial cocultivation systems, as is the case for antibiotic screening assays.


Assuntos
Antibacterianos/análise , Cor , Técnicas Analíticas Microfluídicas , Fibras Ópticas , Fluorescência , Tamanho da Partícula , Espectrometria de Fluorescência
2.
Chemphyschem ; 19(16): 2078-2084, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29683553

RESUMO

The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σmax,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.

3.
Clin Hemorheol Microcirc ; 50(1-2): 101-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538539

RESUMO

A major clinical problem of high relevance in the cardiovascular field is late stent thrombosis after implantation of drug eluting stents (DES). Clinical widely used DES currently utilize durable polymer coatings, which can induce persistent arterial wall inflammation and delayed vascular healing resulting in an impaired endothelialization. In this study we explored the interaction of smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC) with electrospun scaffolds prepared from resorbable polyetheresterurethane (PDC) and poly(p-dioxanone) (PPDO), as well as polyetherimide (PEI), which can be surface modified, in comparison to poly(vinylidene fluoride-co-hexafluoropropene) (PVDF) as reference material, which is established as coating material of DES in clinical applications. Our results show that adhesion could be improved for HUVEC on PDC, PPDO and PEI compared to PVDF, whereas almost no SMC attached to the scaffolds indicating a cell-specific response of HUVEC towards the different fibrous structures. Proliferation and apoptosis results revealed that PPDO and PEI have no significant negative influence on vitality and cell cycle behaviour compared to PVDF. Hence, they represent promising candidates for temporary blood vessel support that induce HUVEC attachment and prevent SMC proliferation.


Assuntos
Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/fisiologia , Miócitos de Músculo Liso/fisiologia , Alicerces Teciduais , Divisão Celular , Células Cultivadas , Dioxanos , Humanos , Poliésteres , Polímeros , Poliuretanos , Polivinil , Stents
4.
Int J Artif Organs ; 34(2): 225-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21374579

RESUMO

Multifunctional polymer-based biomaterials, which combine degradability and shape-memory capability, are promising candidate materials for the realization of active self-anchoring implants. In this work we explored the shape-memory capability as well as the hydrolytic and enzymatic in vitro degradation behavior of electro-spun scaffolds prepared from a multiblock copolymer, containing hydrolytically degradable poly(p-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) segments, which we have named PDC. Electro-spun PDC scaffolds with an average deposit thickness of 80 ± 20 µm and a porosity in the range from 70% to 80% were prepared, where the single fiber diameter was around 3 µm. Excellent shape-memory properties were achieved with high recovery rate (Rr) values in the range of Rr = 92% to 98% and a recovery stress of smax = 4.6 MPa to 5.0 MPa. The switching temperature (Tsw) and the characteristic temperature obtained under constant strain recovery conditions (Ts,max) were found in the range from 32 °C to 35 °C, which was close to the melting temperature (Tm,PCL) associated to the poly(e-caprolactone) domains. A linear mass loss was observed in both hydrolytic and enzymatic degradation experiments. The mass loss was substantially accelerated, in enzymatic degradation when Pseudomonas cepacia lipase was added, which was reported to accelerate the degradation of PCL. During hydrolytic degradation a continuous decrease in elongation at break (eB) from eB = 800% to 15% was observed in a time period of 92 days, while in enzymatic degradation experiments a complete mechanical failure was obtained after 4 days.


Assuntos
Materiais Biocompatíveis , Dioxanos/química , Poliésteres/química , Polímeros/química , Alicerces Teciduais , Burkholderia cepacia/enzimologia , Hidrólise , Lipase/química , Lipase/isolamento & purificação , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa