Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(4): 691-704, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529374

RESUMO

Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose , Complexo 2 de Proteínas Adaptadoras/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Complexos Multiproteicos/metabolismo
2.
Plant Cell ; 34(6): 2150-2173, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35218346

RESUMO

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.


Assuntos
Arabidopsis , Vesículas Revestidas por Clatrina , Arabidopsis/genética , Arabidopsis/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Proteoma/metabolismo , Proteômica , Fator de Transcrição AP-1/análise , Fator de Transcrição AP-1/metabolismo
3.
Cell ; 143(1): 111-21, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20887896

RESUMO

Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
4.
Plant Cell ; 33(9): 3057-3075, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34240193

RESUMO

Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Clatrina/genética , Endocitose/genética , Complexo de Golgi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clatrina/metabolismo , Raízes de Plantas/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34907016

RESUMO

Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin-mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/fisiologia , Endocitose/fisiologia , Células Vegetais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina , Corantes Fluorescentes , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência/métodos , Plântula
6.
Plant Physiol ; 190(4): 2651-2670, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36149293

RESUMO

The plant Ubiquitin Regulatory X (UBX) domain-containing protein 1 (PUX1) functions as a negative regulator of gibberellin (GA) signaling. GAs are plant hormones that stimulate seed germination, the transition to flowering, and cell elongation and division. Loss of Arabidopsis (Arabidopsis thaliana) PUX1 resulted in a "GA-overdose" phenotype including early flowering, increased stem and root elongation, and partial resistance to the GA-biosynthesis inhibitor paclobutrazol during seed germination and root elongation. Furthermore, GA application failed to stimulate further stem elongation or flowering onset suggesting that elongation and flowering response to GA had reached its maximum. GA hormone partially repressed PUX1 protein accumulation, and PUX1 showed a GA-independent interaction with the GA receptor GA-INSENSITIVE DWARF-1 (GID1). This suggests that PUX1 is GA regulated and/or regulates elements of the GA signaling pathway. Consistent with PUX1 function as a negative regulator of GA signaling, the pux1 mutant caused increased GID1 expression and decreased accumulation of the DELLA REPRESSOR OF GA1-3, RGA. PUX1 is a negative regulator of the hexameric AAA+ ATPase CDC48, a protein that functions in diverse cellular processes including unfolding proteins in preparation for proteasomal degradation, cell division, and expansion. PUX1 binding to GID1 required the UBX domain, a binding motif necessary for CDC48 interaction. Moreover, PUX1 overexpression in cell culture not only stimulated the disassembly of CDC48 hexamer but also resulted in co-fractionation of GID1, PUX1, and CDC48 subunits in velocity sedimentation assays. Based on our results, we propose that PUX1 and CDC48 are additional factors that need to be incorporated into our understanding of GA signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transdução de Sinais , Reguladores de Crescimento de Plantas , Arabidopsis/genética , Giberelinas , Ciclo Celular , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte , Proteínas de Arabidopsis/genética
7.
J Cell Sci ; 133(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32616560

RESUMO

Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.


Assuntos
Arabidopsis , Clatrina , Arabidopsis/genética , Vesículas Revestidas por Clatrina , Endocitose , Microscopia de Fluorescência
8.
New Phytol ; 235(2): 472-487, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451504

RESUMO

Primexine deposition is essential for the formation of pollen wall patterns and is precisely regulated by the tapetum and microspores. While tapetum- and/or microspore-localized proteins are required for primexine biosynthesis, how their trafficking is established and controlled is poorly understood. In Arabidopsis thaliana, AP1σ1 and AP1σ2, two genes encoding the σ subunit of the trans-Golgi network/early endosome (TGN/EE)-localized ADAPTOR PROTEIN-1 complex (AP-1), are partially redundant for plant viability, and the loss of AP1σ1 function reduces male fertility due to defective primexine formation. Here, we investigated the role of AP-1 in pollen wall formation. The deposition of Acyl-CoA SYNTHETASE5 (ACOS5) and type III LIPID TRANSFER PROTEINs (LTPs) secreted from the anther tapetum, which are involved in exine formation, were impaired in ap1σ1 mutants. In addition, the microspore plasma membrane (PM) protein RUPTURED POLLEN GRAIN1 (RPG1), which regulates primexine deposition, accumulated abnormally at the TGN/EE in ap1σ1 mutants. We show that AP-1µ recognizes the YXXΦ motif of RPG1, thereby regulating its PM abundance through endocytic trafficking, and that loss of AP1σ1 decreases the levels of other AP-1 subunits at the TGN/EE. Our observations show that AP-1-mediated post-Golgi trafficking plays a vital role in pollen wall development by regulating protein transport in tapetal cells and microspores.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
9.
Plant Physiol ; 185(4): 1986-2002, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33564884

RESUMO

Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Dinaminas/metabolismo , Flagelina/metabolismo , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Endocitose/efeitos dos fármacos
10.
Plant Physiol ; 186(1): 330-343, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576796

RESUMO

Pollen development is a key process for the sexual reproduction of angiosperms. The Golgi plays a critical role in pollen development via the synthesis and transport of cell wall materials. However, little is known about the molecular mechanisms underlying the maintenance of Golgi integrity in plants. In Arabidopsis thaliana, syntaxin of plants (SYP) 3 family proteins SYP31 and SYP32 are the only two Golgi-localized Qa-soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) with unknown endogenous functions. Here, we demonstrate the roles of SYP31 and SYP32 in modulating Golgi morphology and pollen development. Two independent lines of syp31/+ syp32/+ double mutants were male gametophytic lethal; the zero transmission rate of syp31 syp32 mutations was restored to largely normal levels by pSYP32:SYP32 but not pSYP32:SYP31 transgenes, indicating their functional differences in pollen development. The initial arrest of syp31 syp32 pollen occurred during the transition from the microspore to the bicellular stage, where cell plate formation in pollen mitosis I (PMI) and deposition of intine were abnormal. In syp31 syp32 pollen, the number and length of Golgi cisterna were significantly reduced, accompanied by many surrounding vesicles, which could be largely attributed to defects in anterograde and retrograde trafficking routes. SYP31 and SYP32 directly interacted with COG3, a subunit of the conserved oligomeric Golgi (COG) complex and were responsible for its Golgi localization, providing an underlying mechanism for SYP31/32 function in intra-Golgi trafficking. We propose that SYP31 and SYP32 play partially redundant roles in pollen development by modulating protein trafficking and Golgi structure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Golgi , Pólen , Proteínas Qa-SNARE , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Transporte Proteico , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
11.
Plant Cell ; 29(10): 2610-2625, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28970336

RESUMO

Although exocytosis is critical for the proper trafficking of materials to the plasma membrane, relatively little is known about the mechanistic details of post-Golgi trafficking in plants. Here, we demonstrate that the DENN (Differentially Expressed in Normal and Neoplastic cells) domain protein STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) and SCD2 form a previously unknown protein complex, the SCD complex, that functionally interacts with subunits of the exocyst complex and the RabE1 family of GTPases in Arabidopsis thaliana Consistent with a role in post-Golgi trafficking, scd1 and scd2 mutants display defects in exocytosis and recycling of PIN2-GFP. Perturbation of exocytosis using the small molecule Endosidin2 results in growth inhibition and PIN2-GFP trafficking defects in scd1 and scd2 mutants. In addition to the exocyst, the SCD complex binds in a nucleotide state-specific manner with Sec4p/Rab8-related RabE1 GTPases and overexpression of wild-type RabE1 rescues scd1 temperature-sensitive mutants. Furthermore, SCD1 colocalizes with the exocyst subunit, SEC15B, and RabE1 at the cell plate and in distinct punctae at or near the plasma membrane. Our findings reveal a mechanism for plant exocytosis, through the identification and characterization of a protein interaction network that includes the SCD complex, RabE1, and the exocyst.


Assuntos
Arabidopsis/metabolismo , Citocinese/fisiologia , Exocitose/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocinese/genética , Citoplasma/genética , Citoplasma/metabolismo , Exocitose/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(34): E7197-E7204, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784794

RESUMO

Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Endossomos/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
13.
Plant Cell Physiol ; 60(6): 1316-1330, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796435

RESUMO

Polarized cell growth in plants is maintained under the strict control and exquisitely choreographed balance of exocytic and endocytic membrane trafficking. The pollen tube has become a model system for rapid polar growth in which delivery of cell wall material and membrane recycling are controlled by membrane trafficking. Endocytosis plays an important role that is poorly understood. The plant AP180 N-Terminal Homolog (ANTH) proteins are putative homologs of Epsin 1 that recruits clathrin to phosphatidylinositol 4, 5-bisphosphate (PIP2) containing membranes to facilitate vesicle budding during endocytosis. Two Arabidopsis ANTH encoded by the genes AtAP180 and AtECA2 are highly expressed in pollen tubes. Pollen tubes from T-DNA inserted knockout mutant lines display significant morphological defects and unique pectin deposition. Fluorescent tagging reveals organization into dynamic foci located at the lateral flanks of the pollen tube. This precisely defined subapical domain coincides which clathrin-mediated endocytosis (CME) and PIP2 localization. Using a liposome-protein binding test, we showed that AtECA2 protein and ANTH domain recombinant proteins have strong affinity to PIP2 and phosphatidic acid containing liposomes in vitro. Taken together these data suggest that Arabidopsis ANTH proteins may play an important role in CME, proper cell wall assembly and morphogenesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Clatrina/fisiologia , Endocitose , Proteínas Monoméricas de Montagem de Clatrina/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Monoméricas de Montagem de Clatrina/genética , Filogenia , Tubo Polínico/metabolismo
14.
Methods ; 115: 80-90, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27713081

RESUMO

We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.


Assuntos
Rastreamento de Células/métodos , Embrião não Mamífero/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Análise de Célula Única/métodos , Software , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Algoritmos , Animais , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Caenorhabditis elegans , Rastreamento de Células/estatística & dados numéricos , Clatrina/genética , Clatrina/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Transdução de Sinal Luminoso , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Análise de Célula Única/estatística & dados numéricos
15.
Plant Physiol ; 171(1): 215-29, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945051

RESUMO

In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2µ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2µ, was required for SA- and tyrphostin A23-dependent inhibition of CME Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Membranas/metabolismo , Complexo 2 de Proteínas Adaptadoras/efeitos dos fármacos , Complexo 2 de Proteínas Adaptadoras/genética , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clatrina/efeitos dos fármacos , Cadeias Pesadas de Clatrina/efeitos dos fármacos , Cadeias Pesadas de Clatrina/metabolismo , Cadeias Leves de Clatrina/efeitos dos fármacos , Cadeias Leves de Clatrina/metabolismo , Vesículas Revestidas por Clatrina/efeitos dos fármacos , Vesículas Revestidas por Clatrina/metabolismo , Gravitação , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Fator de Transcrição AP-2/metabolismo , Tirfostinas/antagonistas & inibidores
16.
Plant Cell Environ ; 40(1): 165-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770560

RESUMO

Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP-binding cassette B19 (ABCB19) and PIN-formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL-triggered, PIN3-mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL-triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid affect BL-induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL-triggered hypocotyl phototropism in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Clatrina/metabolismo , Hipocótilo/fisiologia , Ácidos Indolacéticos/metabolismo , Luz , Fototropismo/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Endocitose/efeitos da radiação , Hipocótilo/efeitos da radiação
17.
Plant Cell ; 26(11): 4409-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25415978

RESUMO

The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Crescimento Celular , Polaridade Celular , Genes Reporter , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tubulina (Proteína)/metabolismo , Técnicas do Sistema de Duplo-Híbrido
18.
PLoS Pathog ; 10(12): e1004578, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521759

RESUMO

Vesicular trafficking has emerged as an important means by which eukaryotes modulate responses to microbial pathogens, likely by contributing to the correct localization and levels of host components necessary for effective immunity. However, considering the complexity of membrane trafficking in plants, relatively few vesicular trafficking components with functions in plant immunity are known. Here we demonstrate that Arabidopsis thaliana Dynamin-Related Protein 2B (DRP2B), which has been previously implicated in constitutive clathrin-mediated endocytosis (CME), functions in responses to flg22 (the active peptide derivative of bacterial flagellin) and immunity against flagellated bacteria Pseudomonas syringae pv. tomato (Pto) DC3000. Consistent with a role of DRP2B in Pattern-Triggered Immunity (PTI), drp2b null mutant plants also showed increased susceptibility to Pto DC3000 hrcC-, which lacks a functional Type 3 Secretion System, thus is unable to deliver effectors into host cells to suppress PTI. Importantly, analysis of drp2b mutant plants revealed three distinct branches of the flg22-signaling network that differed in their requirement for RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD), the NADPH oxidase responsible for flg22-induced apoplastic reactive oxygen species production. Furthermore, in drp2b, normal MAPK signaling and increased immune responses via the RbohD/Ca2+-branch were not sufficient for promoting robust PR1 mRNA expression nor immunity against Pto DC3000 and Pto DC3000 hrcC-. Based on live-cell imaging studies, flg22-elicited internalization of the plant flagellin-receptor, FLAGELLIN SENSING 2 (FLS2), was found to be partially dependent on DRP2B, but not the closely related protein DRP2A, thus providing genetic evidence for a component, implicated in CME, in ligand-induced endocytosis of FLS2. Reduced trafficking of FLS2 in response to flg22 may contribute in part to the non-canonical combination of immune signaling defects observed in drp2b. In conclusion, this study adds DRP2B to the relatively short list of known vesicular trafficking proteins with roles in flg22-signaling and PTI in plants.


Assuntos
Arabidopsis/fisiologia , Proteínas de Ligação ao GTP/deficiência , Imunidade Inata/fisiologia , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/fisiologia , Flagelina/imunologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/fisiologia , Mutação/genética , NADPH Oxidases/fisiologia , Proteínas Quinases/imunologia , Transdução de Sinais
19.
Plant Cell ; 25(2): 499-516, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23424247

RESUMO

Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cadeias Leves de Clatrina/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Cadeias Leves de Clatrina/genética , Cicloeximida/farmacologia , Endossomos/metabolismo , Proteínas F-Box/metabolismo , Gravitropismo/fisiologia , Leupeptinas/farmacologia , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Rede trans-Golgi/metabolismo
20.
Plant Cell ; 25(10): 3910-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24179130

RESUMO

Stomatal cytokinesis defective1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Clatrina/metabolismo , Citocinese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa