Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Phys Med Biol ; 69(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38876111

RESUMO

Objective.Active bone marrow (ABM) can serve as both an organ at risk and a target in external beam radiotherapy.18F-fluorothymidine (FLT) PET is the current gold standard for identifying proliferative ABM but it is not approved for human use, and PET scanners are not always available to radiotherapy clinics. Identifying ABM through other, more accessible imaging modalities will allow more patients to receive treatment specific to their ABM distribution. Multi-energy CT (MECT) and fat-fraction MRI (FFMRI) show promise in their ability to characterize bone marrow adiposity, but these methods require validation for identifying proliferative ABM.Approach.Six swine subjects were imaged using FFMRI, fast-kVp switching (FKS) MECT and sequential-scanning (SS) MECT to identify ABM volumes relative to FLT PET-derived ABM volumes. ABM was contoured on FLT PET images as the region within the bone marrow with a SUV above the mean. Bone marrow was then contoured on the FFMRI and MECT images, and thresholds were applied within these contours to determine which threshold produced the best agreement with the FLT PET determined ABM contour. Agreement between contours was measured using the Dice similarity coefficient (DSC).Main results.FFMRI produced the best estimate of the PET ABM contour. Compared to FLT PET ABM volumes, the FFMRI, SS MECT and FKS MECT ABM contours produced average peak DSC of 0.722 ± 0.080, 0.619 ± 0.070, and 0.464 ± 0.080, respectively. The ABM volume was overestimated by 40.51%, 97.63%, and 140.13% by FFMRI, SS MECT and FKS MECT, respectively.Significance.This study explored the ability of FFMRI and MECT to identify the proliferative relative to ABM defined by FLT PET. Of the methods investigated, FFMRI emerged as the most accurate approximation to FLT PET-derived active marrow contour, demonstrating superior performance by both DSC and volume comparison metrics. Both FFMRI and SS MECT show promise for providing patient-specific ABM treatments.


Assuntos
Medula Óssea , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Medula Óssea/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/métodos , Suínos , Proliferação de Células , Tomografia por Emissão de Pósitrons , Processamento de Imagem Assistida por Computador/métodos , Tecido Adiposo/diagnóstico por imagem
2.
Nucl Med Biol ; 122-123: 108368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490805

RESUMO

Advanced ovarian cancer currently has few therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors bind to nuclear PARP and trap the protein-inhibitor complex to DNA. This work investigates a theranostic PARP inhibitor for targeted radiopharmaceutical therapy of ovarian cancer in vitro and PET imaging of healthy mice in vivo. METHODS: [77Br]RD1 was synthesized and assessed for pharmacokinetics and cytotoxicity in human and murine ovarian cancer cell lines. [76Br]RD1 biodistribution and organ uptake in healthy mice were quantified through longitudinal PET/CT imaging and ex vivo radioactivity measurements. Organ-level dosimetry following [76/77Br]RD1 administration was calculated using RAPID, an in-house platform for absorbed dose in mice, and OLINDA for equivalent and effective dose in human. RESULTS: The maximum specific binding (Bmax), equilibrium dissociation constant (Kd), and nonspecific binding slope (NS) were calculated for each cell line. These values were used to calculate the cell specific activity uptake for cell viability studies. The half maximal effective concentration (EC50) was measured as 0.17 (95 % CI: 0.13-0.24) nM and 0.46 (0.13-0.24) nM for PARP(+) and PARP(-) expressing cell lines, respectively. The EC50 was 0.27 (0.21-0.36) nM and 0.30 (0.22-0.41) nM for BRCA1(-) and BRCA1(+) expressing cell lines, respectively. When measuring the EC50 as a function of cellular activity uptake and nuclear dose, the EC50 ranges from 0.020 to 0.039 Bq/cell and 3.3-9.2 Gy, respectively. Excretion through the hepatobiliary and renal pathways were observed in mice, with liver uptake of 2.3 ± 0.4 %ID/g after 48 h, contributing to estimated absorbed dose values in mice of 19.3 ± 0.3 mGy/MBq and 290 ± 10 mGy/MBq for [77Br]RD1 and [76Br]RD1, respectively. CONCLUSION: [77Br]RD1 cytotoxicity was dependent on PARP expression and independent of BRCA1 status. The in vitro results suggest that [77Br]RD1 cytotoxicity is driven by the targeted Meitner-Auger electron (MAe) radiotherapeutic effect of the agent. Further studies investigating the theranostic potential, organ dose, and tumor uptake of [76/77Br]RD1 are warranted.


Assuntos
Neoplasias Ovarianas , Compostos Radiofarmacêuticos , Feminino , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medicina de Precisão , Linhagem Celular Tumoral , Distribuição Tecidual , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/radioterapia
3.
Med Phys ; 42(2): 715-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25652485

RESUMO

PURPOSE: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy(®) Treatment System plans under varying degrees of rotational beamlet symmetry. METHODS: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. RESULTS: The authors demonstrate the ability to reproduce the clinical dose-volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. CONCLUSIONS: This study demonstrated that the effect of external magnetic fields can be mitigated by exploiting a more rotationally symmetric treatment modality.


Assuntos
Campos Magnéticos , Método de Monte Carlo , Neoplasias/radioterapia , Doses de Radiação , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa