Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioinformatics ; 40(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38485690

RESUMO

MOTIVATION: The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS: Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION: The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Adulto , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Reprodutibilidade dos Testes , Mutação , Hematopoese/genética
3.
Breast Cancer Res ; 16(4): R69, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24985072

RESUMO

INTRODUCTION: There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-ß) pathway-associated genes relative to other subtypes, including the TGF-ß receptor type III (TßRIII). We hypothesize that TßRIII is tumor promoter in mesenchymal-stem like TNBC cells. METHODS: Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TßRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TßRIII (TßRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TßRIII expression patterns across all TNBC subtypes. RESULTS: TßRIII was the most differentially expressed TGF-ß signaling gene in the MSL subtype. Silencing TßRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TßRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TßRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TßRIII-KD. Stable knockdown of integrin-α2 in TßRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells. CONCLUSIONS: We have found that TßRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TßRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TßRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TßRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.


Assuntos
Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Integrina alfa2/genética , Células-Tronco Mesenquimais/patologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Esferoides Celulares , Carga Tumoral , Células Tumorais Cultivadas
4.
PLoS Genet ; 7(8): e1002209, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21852952

RESUMO

In many animal species the meiosis I spindle in oocytes is anastral and lacks centrosomes. Previous studies of Drosophila oocytes failed to detect the native form of the germline-specific γ-tubulin (γTub37C) in meiosis I spindles, and genetic studies have yielded conflicting data regarding the role of γTub37C in the formation of bipolar spindles at meiosis I. Our examination of living and fixed oocytes carrying either a null allele or strong missense mutation in the γtub37C gene demonstrates a role for γTub37C in the positioning of the oocyte nucleus during late prophase, as well as in the formation and maintenance of bipolar spindles in Drosophila oocytes. Prometaphase I spindles in γtub37C mutant oocytes showed wide, non-tapered spindle poles and disrupted positioning. Additionally, chromosomes failed to align properly on the spindle and showed morphological defects. The kinetochores failed to properly co-orient and often lacked proper attachments to the microtubule bundles, suggesting that γTub37C is required to stabilize kinetochore microtubule attachments in anastral spindles. Although spindle bipolarity was sometimes achieved by metaphase I in both γtub37C mutants, the resulting chromosome masses displayed highly disrupted chromosome alignment. Therefore, our data conclusively demonstrate a role for γTub37C in both the formation of the anastral meiosis I spindle and in the proper attachment of kinetochore microtubules. Finally, multispectral imaging demonstrates the presences of native γTub37C along the length of wild-type meiosis I spindles.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Oócitos/fisiologia , Prometáfase , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Cromossomos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Masculino , Meiose , Metáfase , Mutação de Sentido Incorreto , Oócitos/metabolismo , Ligação Proteica , Tubulina (Proteína)/genética
5.
Clin Cancer Res ; 30(15): 3220-3228, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446993

RESUMO

PURPOSE: Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN: We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS: We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS: These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.


Assuntos
Biomarcadores Tumorais , Proteômica , Humanos , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Proteoma , Hematopoiese Clonal , Fatores de Risco , Adulto , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Prognóstico
6.
Leuk Res ; 135: 107419, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956474

RESUMO

Clonal hematopoiesis (CH) is defined by the presence of an expanded clonal hematopoietic cell population due to an acquired mutation conferring a selective growth advantage and is known to predispose to hematologic malignancy. In this review, we discuss sequencing methods for CH detection in bulk sequencing data and corresponding bioinformatic approaches for variant calling, filtering, and curation. We detail practical recommendations for CH calling. Finally, we discuss how improvements in CH sequencing and bioinformatic approaches will enable the characterization of CH trajectories, its impact on human health, and therapeutic approaches to mitigate its adverse effects.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Mutação , Células Clonais/patologia
7.
Cell Death Dis ; 12(8): 745, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315849

RESUMO

p73 and p63 are members of the p53 family that exhibit overlapping and distinct functions in development and homeostasis. The evaluation of p73 and p63 isoform expression across human tissue can provide greater insight to the functional interactions between family members. We determined the mRNA isoform expression patterns of TP73 and TP63 across a panel of 36 human tissues and protein expression within the highest-expressing tissues. TP73 and TP63 expression significantly correlated across tissues. In tissues with concurrent mRNA expression, nuclear co-expression of both proteins was observed in a majority of cells. Using GTEx data, we quantified p73 and p63 isoform expression in human tissue and identified that the α-isoforms of TP73 and TP63 were the predominant isoform expressed in nearly all tissues. Further, we identified a previously unreported p73 mRNA product encoded by exons 4 to 14. In sum, these data provide the most comprehensive tissue-specific atlas of p73 and p63 protein and mRNA expression patterns in human and murine samples, indicating coordinate expression of these transcription factors in the majority of tissues in which they are expressed.


Assuntos
Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Fatores de Transcrição/genética , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética , Processamento Alternativo/genética , Animais , Epitélio/metabolismo , Éxons/genética , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Proteína Tumoral p73/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Sci Transl Med ; 12(534)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161105

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)-targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC. Here, we report that MYCN, an oncogene typically overexpressed in tumors of the nervous system or with neuroendocrine features, is heterogeneously expressed within a substantial fraction of primary and recurrent TNBC and is expressed in an even higher fraction of TNBCs that do not display a pathological complete response after neoadjuvant chemotherapy. We performed high-throughput chemical screens on TNBC cell lines with varying amounts of MYCN expression and determined that cells with higher expression of MYCN were more sensitive to bromodomain and extraterminal motif (BET) inhibitors. Combined BET and MEK inhibition resulted in a synergistic decrease in viability, both in vitro and in vivo, using cell lines and patient-derived xenograft (PDX) models. Our preclinical data provide a rationale to advance a combination of BET and MEK inhibitors to clinical investigation for patients with advanced MYCN-expressing TNBC.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 14(6): e0218458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216312

RESUMO

p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown. Herein, we show that p73-deficient mice exhibit delayed wound healing despite morphologically normal-appearing skin. The delay in wound healing is accompanied by decreased proliferation and increased levels of biomarkers of the DNA damage response in basal keratinocytes at the epidermal wound edge. In wild-type mice, this same cell population exhibited increased p73 expression after wounding. Analyzing single-cell transcriptomic data, we found that p73 was expressed by epidermal and hair follicle stem cells, cell types required for wound healing. Moreover, we discovered that p73 isoforms expressed in the skin (ΔNp73) enhance p63-mediated expression of keratinocyte genes during cellular reprogramming from a mesenchymal to basal keratinocyte-like cell. We identified a set of 44 genes directly or indirectly regulated by ΔNp73 that are involved in skin development, cell junctions, cornification, proliferation, and wound healing. Our results establish a role for p73 in cutaneous wound healing through regulation of basal keratinocyte function.


Assuntos
Ectoderma/metabolismo , Pele/metabolismo , Proteína Tumoral p73/genética , Cicatrização/genética , Animais , Proliferação de Células/genética , Dano ao DNA/genética , Ectoderma/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Análise de Célula Única , Pele/crescimento & desenvolvimento , Pele/lesões , Nicho de Células-Tronco/genética , Transativadores/genética
11.
iScience ; 8: 236-249, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30340069

RESUMO

We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs. Through modulation of p73 expression in murine granulosa cells and transformed cell lines, followed by RNA-seq and chromatin immunoprecipitation sequencing, we discovered p73-dependent regulation of a gene set necessary for cell adhesion and migration and components of the focimatrix (focal intra-epithelial matrix), a basal lamina between granulosa cells that promotes follicle maturation. In summary, p73 is essential for ovarian folliculogenesis and functions as a key regulator of a gene network involved in cell-to-cell adhesion and migration.

12.
Clin Cancer Res ; 23(15): 4035-4045, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270498

RESUMO

Purpose: Because of inherent disease heterogeneity, targeted therapies have eluded triple-negative breast cancer (TNBC), and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine whether the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic antitumor effects in TNBC.Methods: Patients with stage II/III TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery. Tumor specimens were obtained at baseline, cycle 1, and surgery. Primary endpoint was pathologic complete response (pCR); secondary endpoints included clinical responses, breast conservation rate, safety, and discovery of molecular features associated with outcome.Results: Between 2009 and 2013, 145 patients were accrued; 36% of patients in the everolimus arm and 49% of patients in the placebo arm achieved pCR; in each arm, 50% of patients achieved complete responses by imaging. Higher rates of neutropenia, mucositis, and transaminase elevation were seen with everolimus. Clinical response to therapy and long-term outcome correlated with increased frequency of DNA damage response (DDR) gene mutations, Basal-like1 and Mesenchymal TNBC-subtypes, AR-negative status, and high Ki67, but not with tumor-infiltrating lymphocytes.Conclusions: The paclitaxel/cisplatin combination was well tolerated and active, but addition of everolimus was associated with more adverse events without improvement in pCR or clinical response. However, discoveries made from correlative studies could lead to predictive TNBC biomarkers that may impact clinical decision-making and provide new avenues for mechanistic exploration that could lead to clinical utility. Clin Cancer Res; 23(15); 4035-45. ©2017 AACR.


Assuntos
Cisplatino/administração & dosagem , Everolimo/administração & dosagem , Paclitaxel/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Everolimo/efeitos adversos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Antígeno Ki-67/genética , Linfócitos do Interstício Tumoral/patologia , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Paclitaxel/efeitos adversos , Receptores Androgênicos/genética , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Cancer Res ; 76(16): 4850-60, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27231203

RESUMO

Triple-negative breast cancer (TNBC) and other molecularly heterogeneous malignancies present a significant clinical challenge due to a lack of high-frequency "driver" alterations amenable to therapeutic intervention. These cancers often exhibit genomic instability, resulting in chromosomal rearrangements that affect the structure and expression of protein-coding genes. However, identification of these rearrangements remains technically challenging. Using a newly developed approach that quantitatively predicts gene rearrangements in tumor-derived genetic material, we identified and characterized a novel oncogenic fusion involving the MER proto-oncogene tyrosine kinase (MERTK) and discovered a clinical occurrence and cell line model of the targetable FGFR3-TACC3 fusion in TNBC. Expanding our analysis to other malignancies, we identified a diverse array of novel and known hybrid transcripts, including rearrangements between noncoding regions and clinically relevant genes such as ALK, CSF1R, and CD274/PD-L1 The over 1,000 genetic alterations we identified highlight the importance of considering noncoding gene rearrangement partners, and the targetable gene fusions identified in TNBC demonstrate the need to advance gene fusion detection for molecularly heterogeneous cancers. Cancer Res; 76(16); 4850-60. ©2016 AACR.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Proteínas de Fusão Oncogênica/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Feminino , Rearranjo Gênico , Humanos , Immunoblotting , Neoplasias/genética , Reação em Cadeia da Polimerase , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase
14.
Cell Rep ; 14(10): 2289-300, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947080

RESUMO

We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus; hippocampal dysgenesis; sterility; and chronic inflammation/infection of lung, middle ear, and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells and suggest that p73 marks these cells for MCC differentiation. In summary, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation, and, like p63, has an essential role in development of tissues.


Assuntos
Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Redes Reguladoras de Genes , Pulmão/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Diferenciação Celular , Células Cultivadas , Cílios/patologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Pulmão/citologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Análise de Sequência de RNA , Traqueia/metabolismo , Traqueia/patologia , Transativadores/deficiência , Transativadores/genética , Transativadores/metabolismo , Transcriptoma , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa