Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Physiol Cell Physiol ; 318(1): C111-C124, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532718

RESUMO

Bone differs from other connective tissues; it is isolated by a layer of osteoblasts that are connected by tight and gap junctions. This allows bone to create dense lamellar type I collagen, control pH, mineral deposition, and regulate water content forming a compact and strong structure. New woven bone formed after degradation of mineralized cartilage is rapidly degraded and resynthesized to impart structural order for local bone strength. Ossification is regulated by thickness of bone units and by patterning via bone morphogenetic receptors including activin, other bone morphogenetic protein receptors, transforming growth factor-ß receptors, all part of a receptor superfamily. This superfamily interacts with receptors for additional signals in bone differentiation. Important features of the osteoblast environment were established using recent tools including osteoblast differentiation in vitro. Osteoblasts deposit matrix protein, over 90% type I collagen, in lamellae with orientation alternating parallel or orthogonal to the main stress axis of the bone. Into this organic matrix, mineral is deposited as hydroxyapatite. Mineral matrix matures from amorphous to crystalline hydroxyapatite. This process includes at least two-phase changes of the calcium-phosphate mineral as well as intermediates involving tropocollagen fibrils to form the bone composite. Beginning with initiation of mineral deposition, there is uncertainty regarding cardinal processes, but the driving force is not merely exceeding the calcium-phosphate solubility product. It occurs behind a epithelial-like layer of osteoblasts, which generate phosphate and remove protons liberated during calcium-phosphate salt deposition. The forming bone matrix is discontinuous from the general extracellular fluid. Required adjustment of ionic concentrations and water removal from bone matrix are important details remaining to be addressed.


Assuntos
Densidade Óssea , Matriz Óssea/metabolismo , Diferenciação Celular , Proteínas de Membrana Transportadoras/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Modelos Biológicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
J Biol Chem ; 294(28): 10773-10788, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152064

RESUMO

Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.


Assuntos
Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Clatrina/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Humanos , Glomérulos Renais/ultraestrutura , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Morfolinos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Podócitos/citologia , Podócitos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
3.
J Biol Chem ; 291(51): 26241-26251, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27738108

RESUMO

Hepatoblastoma (HB) is associated with aberrant activation of the ß-catenin and Hippo/YAP signaling pathways. Overexpression of mutant ß-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc+/+ (WT) and myc-/- (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid ß-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid ß-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética
4.
J Hepatol ; 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28943296

RESUMO

BACKGROUND & AIMS: Neutrophils and liver sinusoidal endothelial cells (LSECs) both contribute to sterile inflammatory injury during ischemia/reperfusion (I/R), a well-known liver surgical stress. Interleukin-33 (IL-33) has been shown to drive neutrophil infiltration during inflammatory responses through its receptor ST2. We recently reported that infiltrating neutrophils form neutrophil extracellular traps (NETs), which exacerbate sterile inflammatory injury in liver I/R. Here, we sought to determine the role of IL-33 in NET formation during liver sterile inflammation. METHODS: Evaluation of IL-33 forming NETs was investigated using a partial liver I/R model to generate sterile injury in healthy WT, IL-33 and ST2 knockouts. Serum levels of IL-33 and myeloperoxidase (MPO)-DNA complex were measured in both humans and mice after the first surgery. Liver damage was assessed. Mouse neutrophil depletion was performed by intraperitoneal injection of anti-Ly6G antibody before I/R. RESULTS: Patients undergoing liver resection showed a significant increase in serum IL-33 compared to healthy volunteers. This coincided with higher serum MPO-DNA complexes. NET formation was decreased in IL-33 and ST2 knockout mice compared with control mice, after liver I/R. IL-33 or ST2 deficiency protected livers from I/R injury, whereas rIL-33 administration during I/R exacerbated hepatotoxicity and systemic inflammation. In vitro, IL-33 is released from LSECs to promote NET formation. IL-33 deficient LSECs failed to induce NETs. ST2 deficient neutrophils limited their capacity to form NETs in vitro and adoptive transfer of ST2 knockout neutrophils to neutrophil-depleted WT mice significantly decreased NET formation. CONCLUSIONS: Data establish that IL-33, mainly released from LSECs, causes excessive sterile inflammation after hepatic I/R by inducing NET formation. Therapeutic targeting of IL-33/ST2 might extend novel strategies to minimize organ damage in various clinical settings associated with sterile inflammation. LAY SUMMARY: Liver ischemia and reperfusion injury results in the formation of neutrophil extracellular traps, which contribute to organ damage in liver surgeries. Herein, we show that IL-33 is released from liver sinusoidal endothelial cells to promote NET formation during liver I/R, which exacerbates inflammatory cascades and sterile inflammation.

5.
Hepatology ; 59(5): 1984-1997, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375466

RESUMO

UNLABELLED: High-mobility group box 1 (HMGB1) is an abundant chromatin-associated nuclear protein and released into the extracellular milieu during liver ischemia-reperfusion (I/R), signaling activation of proinflammatory cascades. Because the intracellular function of HMGB1 during sterile inflammation of I/R is currently unknown, we sought to determine the role of intracellular HMGB1 in hepatocytes after liver I/R. When hepatocyte-specific HMGB1 knockout (HMGB1-HC-KO) and control mice were subjected to a nonlethal warm liver I/R, it was found that HMGB1-HC-KO mice had significantly greater hepatocellular injury after I/R, compared to control mice. Additionally, there was significantly greater DNA damage and decreased chromatin accessibility to repair with lack of HMGB1. Furthermore, lack of hepatocyte HMGB1 led to excessive poly(ADP-ribose)polymerase 1 activation, exhausting nicotinamide adenine dinucleotide and adenosine triphosphate stores, exacerbating mitochondrial instability and damage, and, consequently, leading to increased cell death. We found that this was also associated with significantly more oxidative stress (OS) in HMGB1-HC-KO mice, compared to control. Increased nuclear instability led to a resultant increase in the release of histones with subsequently more inflammatory cytokine production and organ damage through activation of Toll-like receptor 9. CONCLUSION: The lack of HMGB1 within hepatocytes leads to increased susceptibility to cellular death after OS conditions.


Assuntos
Citoproteção , Proteína HMGB1/fisiologia , Hepatócitos/metabolismo , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/etiologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Receptor Toll-Like 9/fisiologia
6.
J Immunol ; 190(7): 3541-51, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455503

RESUMO

Necrotizing enterocolitis (NEC) develops in response to elevated TLR4 signaling in the newborn intestinal epithelium and is characterized by TLR4-mediated inhibition of enterocyte migration and reduced mucosal healing. The downstream processes by which TLR4 impairs mucosal healing remain incompletely understood. In other systems, TLR4 induces autophagy, an adaptive response to cellular stress. We now hypothesize that TLR4 induces autophagy in enterocytes and that TLR4-induced autophagy plays a critical role in NEC development. Using mice selectively lacking TLR4 in enterocytes (TLR4(ΔIEC)) and in TLR4-deficient cultured enterocytes, we now show that TLR4 activation induces autophagy in enterocytes. Immature mouse and human intestine showed increased expression of autophagy genes compared with full-term controls, and NEC development in both mouse and human was associated with increased enterocyte autophagy. Importantly, using mice in which we selectively deleted the autophagy gene ATG7 from the intestinal epithelium (ATG7(ΔIEC)), the induction of autophagy was determined to be required for and not merely a consequence of NEC, because ATG7(ΔIEC) mice were protected from NEC development. In defining the mechanisms involved, TLR4-induced autophagy led to impaired enterocyte migration both in vitro and in vivo, which in cultured enterocytes required the induction of RhoA-mediated stress fibers. These findings depart from current dogma in the field by identifying a unique effect of TLR4-induced autophagy within the intestinal epithelium in the pathogenesis of NEC and identify that the negative consequences of autophagy on enterocyte migration play an essential role in its development.


Assuntos
Autofagia , Movimento Celular , Enterocolite Necrosante/etiologia , Enterócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Movimento Celular/genética , Modelos Animais de Doenças , Enterocolite Necrosante/patologia , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Transgênicos , Receptor 4 Toll-Like/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
J Immunol ; 191(5): 2665-79, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23904166

RESUMO

Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.


Assuntos
Proteínas de Transporte/imunologia , Histonas/imunologia , Inflamassomos/metabolismo , Células de Kupffer/imunologia , Fígado/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Histonas/metabolismo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Células de Kupffer/metabolismo , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Mol Cancer Ther ; 23(3): 354-367, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992761

RESUMO

Induction of programmed cell death (PCD) is a key cytotoxic effect of anticancer therapies. PCD is not confined to caspase-dependent apoptosis, but includes necroptosis, a regulated form of necrotic cell death controlled by receptor-interacting protein (RIP) kinases 1 and 3, and mixed lineage kinase domain-like (MLKL) pseudokinase. Necroptosis functions as a defense mechanism against oncogenic mutations and pathogens and can be induced by a variety of anticancer agents. However, the functional role and regulatory mechanisms of necroptosis in anticancer therapy are poorly understood. In this study, we found that RIP3-dependent but RIP1-independent necroptosis is engaged by 5-fluorouracil (5-FU) and other widely used antimetabolite drugs, and functions as a major mode of cell death in a subset of colorectal cancer cells that express RIP3. We identified a novel 5-FU-induced necroptosis pathway involving p53-mediated induction of the BH3-only Bcl-2 family protein, p53 upregulated modulator of apoptosis (PUMA), which promotes cytosolic release of mitochondrial DNA and stimulates its sensor z-DNA-binding protein 1 (ZBP1) to activate RIP3. PUMA/RIP3-dependent necroptosis mediates the in vitro and in vivo antitumor effects of 5-FU and promotes a robust antitumor immune response. Our findings provide a rationale for stimulating necroptosis to enhance tumor cell killing and antitumor immune response leading to improved colorectal cancer treatments.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Proteína Supressora de Tumor p53 , Necroptose , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Necrose/metabolismo , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
9.
Aging Cell ; 22(4): e13782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734200

RESUMO

Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Miocárdio/metabolismo , Reparo do DNA
10.
Am J Physiol Gastrointest Liver Physiol ; 303(2): G189-98, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22575222

RESUMO

Sterile inflammatory insults, such as ischemia-reperfusion (I/R) injury, result from pathogenic factors, including damage-associated molecular pattern signaling, activation of innate immunity, and upregulation of proinflammatory cytokines. At the same time, a number of protective, or prosurvival, pathways are also activated, and the extent of end-organ damage is ultimately determined by the balance between these two systems. In liver I/R, members of the calcium/calmodulin-dependent protein kinase (CaMK) family are known to be activated, but their individual roles are largely unknown. In this study, we show that one CaMK member, CaMKIV, is protective in hepatic I/R by activating the prosurvival pathway of autophagy in hepatocytes. CaMKIV knockout mice experience significantly worse organ damage after I/R and are deficient in hepatocyte autophagic signaling. Restoration of autophagic signaling with rapamycin reduces organ damage in CaMKIV knockout mice to wild-type levels. In vitro, we show that CaMKIV activation induces autophagy in mouse hepatocytes, and that CaMKIV activation protects hepatocytes from oxidative stress-induced cell death. In conclusion, the protective autophagic signaling pathway serves to reduce organ damage following I/R and is regulated by activation of CaMKIV signaling in hepatocytes.


Assuntos
Autofagia/fisiologia , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/fisiologia , Hepatócitos/enzimologia , Fígado/irrigação sanguínea , Fígado/enzimologia , Traumatismo por Reperfusão/enzimologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/genética , Sirolimo/farmacologia
11.
J Immunol ; 183(8): 5023-31, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19794066

RESUMO

Eosinophils (Eos) are found at increased numbers within necrotic areas of tumors. We show that necrotic material from cell lysates containing damage-associated molecular pattern molecules induce eosinophil degranulation (release of major basic protein and eosinophil peroxidase) and enhance their oxidative burst while the stimulatory capacity of cell lysates is significantly diminished following oxidation. High mobility group box 1 (HMGB1), a prototypic damage-associated molecular pattern molecule, released following necrosis but not apoptosis, induced a similar effect on Eos. Additionally, we demonstrate that HMGB1 enhances eosinophil survival and acts as a chemoattractant. Consistently, we show that Eos express an HMGB1 receptor, the receptor for advanced glycation end product, and that anti-receptor for advanced glycation end product could diminish the HMGB1-mediated effects. Of all tested biologic activities, Eos respond most sensitively to the presence of necrotic material including HMGB1 with generation of peroxide. We postulate that Eos "sense" necrotic cell death, migrating to and responding to areas of tissue injury/necrosis. Oxidation of cell lysates reduces their biologic activity when compared with native lysates. We postulate that eosinophil-associated modulation of immunity within tumor and other damaged tissues may be primarily by promoting oxidative degradation of necrotic material. Novel therapeutic strategies may be considered by advancing oxidative denaturation of released necrotic material using Eos or other aerobic strategies.


Assuntos
Eosinófilos/imunologia , Proteína HMGB1/metabolismo , Neutrófilos/imunologia , Explosão Respiratória/imunologia , Anticorpos/farmacologia , Apoptose/imunologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Neoplasias Colorretais/imunologia , Proteína Básica Maior de Eosinófilos/imunologia , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/imunologia , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Proteína HMGB1/farmacologia , Humanos , Necrose/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxirredução , Receptor para Produtos Finais de Glicação Avançada/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Explosão Respiratória/efeitos dos fármacos
12.
Int J Cancer ; 127(10): 2268-78, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20162569

RESUMO

Tumor-associated endothelial cells (TAECs) harboring various genomic abnormalities have been described in human cancers although their origins remain obscure. We generated 4 human cancer cell lines tagged with multiple markers, grew them as xenografts, and characterized their TAECs. Depending on their tumor of origin, 5-40% of TAECs reproducibly expressed all tags. Tagged TAECs (tTAECS) were morphologically, immunologically and functionally similar, although not identical, to normal endothelial cells (ECs) and contained only human chromosomes. tTAECs underwent a senescent-like proliferative arrest after several in vitro passages, but could be immortalized by telomerase, thus allowing us to show that the retention of the EC phenotype was of long-term duration. In contrast, nonimmortalized tTAECs could be propagated in vivo where they incorporated into the tumor neo-vasculature. Although consistent with previous reports that some tumor cells may undergo "vasculogenic mimicry" (VM), the tumor-derived endothelial-like cells described here appear distinctly different. Moreover, their properties and behaviors are more durable than expected for cells undergoing VM, are not the result of fusions between ECs and tumor cells, and are cell autonomous. These findings could have significant implications for therapies that target tumor angiogenesis.


Assuntos
Células Endoteliais/patologia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Células Endoteliais/ultraestrutura , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transplante Heterólogo
13.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31743113

RESUMO

Proteinuric chronic kidney disease (CKD) remains a major health problem worldwide. While it is well established that the progression of primary glomerular disease induces tubulointerstitial lesions, how tubular injury triggers glomerular damage is poorly understood. We hypothesized that injured tubules secrete mediators that adversely affect glomerular health. To test this, we used conditional knockout mice with tubule-specific ablation of ß-catenin (Ksp-ß-cat-/-) and subjected them to chronic angiotensin II (Ang II) infusion or Adriamycin. Compared with control mice, Ksp-ß-cat-/- mice were dramatically protected from proteinuria and glomerular damage. MMP-7, a downstream target of ß-catenin, was upregulated in treated control mice, but this induction was blunted in the Ksp-ß-cat-/- littermates. Incubation of isolated glomeruli with MMP-7 ex vivo led to nephrin depletion and impaired glomerular permeability. Furthermore, MMP-7 specifically and directly degraded nephrin in cultured glomeruli or cell-free systems, and this effect was dependent on its proteolytic activity. In vivo, expression or infusion of exogenous MMP-7 caused proteinuria, and genetic ablation of MMP-7 protected mice from Ang II-induced proteinuria and glomerular injury. Collectively, these results demonstrate that ß-catenin-driven MMP-7 release from renal tubules promotes glomerular injury via direct degradation of the key slit diaphragm protein nephrin.


Assuntos
Túbulos Renais/patologia , Metaloproteinase 7 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Insuficiência Renal Crônica/patologia , beta Catenina/metabolismo , Angiotensina II/toxicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Humanos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Podócitos/metabolismo , Podócitos/patologia , Podócitos/ultraestrutura , Cultura Primária de Células , Proteólise , Ratos , Insuficiência Renal Crônica/induzido quimicamente , beta Catenina/genética
14.
J Neurotrauma ; 33(20): 1866-1882, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26914973

RESUMO

We used controlled cortical impact in mice to model human traumatic brain injury (TBI). Local injury was accompanied by distal diaschisis lesions that developed within brain regions anatomically connected to the injured cortex. At 7 days after injury, histochemistry documented broadly distributed lesions, particularly in the contralateral cortex and ipsilateral thalamus and striatum. Reactive astrocytosis and microgliosis were noted in multiple neural pathways that also showed silver-stained cell processes and bodies. Wisteria floribunda agglutinin (WFA) staining, a marker of perineuronal nets, was substantially diminished in the ipsilateral, but less so in the contralateral cortex. Contralateral cortical silver positive diaschisis lesions showed loss of both phosphorylated and unphosphorylated neurofilament staining, but overall preservation of microtubule-associated protein (MAP)-2 staining. Thalamic lesions showed substantial loss of MAP-2 and unphosphorylated neurofilaments in addition to moderate loss of phosphorylated neurofilament. One animal demonstrated contralateral cerebellar degeneration at 7 days post-injury. After 21 days, the gliosis had quelled, however persistent silver staining was noted. Using a novel serial section technique, we were able to perform electron microscopy on regions fully characterized at the light microscopy level. Cell bodies and processes that were silver positive at the light microscopy level showed hydropic disintegration consisting of: loss of nuclear heterochromatin; dilated somal and neuritic processes with a paucity of filaments, tubules, and mitochondria; and increased numbers of electron-dense membranous structures. Importantly the cell membrane itself was still intact 3 weeks after injury. Although the full biochemical nature of these lesions remains to be deciphered, the morphological preservation of damaged neurons and processes raises the question of whether this is a reversible process.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
15.
Tissue Eng ; 8(3): 499-513, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12167234

RESUMO

We have previously described the design and operation of a microfabricated bioreactor that supports perfused 3D culture of liver cells and facilitates evolution of tissue-like morphological structures. Here, we describe the functional viability of cells maintained in this microarray bioreactor and examine the influence of different seeding protocols on the evolution of structure and function in comparison with static culture. Primary rat hepatocytes were seeded into the perfusion reactors either as single-cell suspensions immediately after isolation or as spheroidal aggregates formed over a 2- to 3-day period. Initial studies in which cells were cultured for 7 days postisolation revealed significantly greater functional activity and morphological stability of cells that were preaggregated for up to 3 days before seeding in the reactor, compared with direct seeding of single cells. Total albumin secretion and urea genesis rates in single-cell reactor cultures declined significantly during this initial culture period while remaining constant in preaggregated reactor cultures. Longer term studies indicate that rates of albumin secretion and urea genesis are maintained at constant levels through 15 days postisolation. These metabolic rates are an order of magnitude higher than observed for the same preaggregated structures cultured statically with comparable medium ratio and exchange conditions. The metabolic function data are supported by light microscopy images showing viable tissue structures, and electron microscopy images that reveal tight junctions, glycogen storage, and bile canaliculi.


Assuntos
Hepatócitos/fisiologia , Albuminas/metabolismo , Animais , Reatores Biológicos , Células Cultivadas , DNA/metabolismo , Hepatócitos/citologia , Microscopia Eletrônica , Ratos , Esferoides Celulares , Fatores de Tempo , Engenharia Tecidual , Ureia/metabolismo
16.
Peptides ; 24(8): 1099-107, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14612179

RESUMO

Lentivirus lytic peptides (LLPs) are derived from HIV-1 and have antibacterial properties. LLP derivatives (eLLPs) were engineered for greater potency against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Minimum bactericidal concentration (MBC) was determined in low and physiologic salt concentrations. MBC was decreased against SA and equivalent against PA in physiologic salt when compared to the parent compound LLP1. In a novel cystic fibrosis (CF) airway cell model, one derivative, WLSA5, reduced the number of adherent PA and only moderately affected CF cell viability. Overall, eLLPs are selectively toxic to bacteria and may be useful against CF airway infections.


Assuntos
Fibrose Cística/metabolismo , Proteína gp41 do Envelope de HIV/toxicidade , HIV-1/genética , Fragmentos de Peptídeos/toxicidade , Engenharia de Proteínas , Antibacterianos/farmacologia , Brônquios/metabolismo , Burkholderia cepacia/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/farmacologia , HIV-1/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
17.
Oncoimmunology ; 1(7): 1074-1083, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23170255

RESUMO

Autocrine and paracrine cell communication can be conveyed by multiple mediators, including membrane-associate proteins, secreted proteins and exosomes. Exosomes are 30-100 nm endosome-derived vesicles consisting in cytosolic material surrounded by a lipid bilayer containing transmembrane proteins. We have previously shown that dendritic cells (DCs) express on their surface multiple TNF superfamily ligands (TNFSFLs), by which they can induce the apoptotic demise of tumor cells as well as the activation of natural killer (NK) cells. In the present study, we demonstrate that, similar to DCs, DC-derived exosomes (DCex) express on their surface TNF, FasL and TRAIL, by which they can trigger caspase activation and apoptosis in tumor cells. We also show that DCex activate NK cells and stimulate them to secrete interferonγ (IFNγ) upon the interaction of DCex TNF with NK-cell TNF receptors. These data demonstrate that DCex can mediate essential innate immune functions that were previously ascribed to DCs.

18.
Free Radic Biol Med ; 53(7): 1440-50, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22892143

RESUMO

Nitrite, a dietary constituent and endogenous signaling molecule, mediates a number of physiological responses including modulation of ischemia/reperfusion injury, glucose tolerance, and vascular remodeling. Although the exact molecular mechanisms underlying nitrite's actions are unknown, the current paradigm suggests that these effects depend on the hypoxic reduction of nitrite to nitric oxide (NO). Mitochondrial biogenesis is a fundamental mechanism of cellular adaptation and repair. However, the effect of nitrite on mitochondrial number has not been explored. Herein, we report that nitrite stimulates mitochondrial biogenesis through a mechanism distinct from that of NO. We demonstrate that nitrite significantly increases cellular mitochondrial number by augmenting the activity of adenylate kinase, resulting in AMP kinase phosphorylation, downstream activation of sirtuin-1, and deacetylation of PGC1α, the master regulator of mitochondrial biogenesis. Unlike NO, nitrite-mediated biogenesis does not require the activation of soluble guanylate cyclase and results in the synthesis of more functionally efficient mitochondria. Further, we provide evidence that nitrite mediates biogenesis in vivo. In a rat model of carotid injury, 2 weeks of continuous oral nitrite treatment postinjury prevented the hyperproliferative response of smooth muscle cells. This protection was accompanied by a nitrite-dependent upregulation of PGC1α and increased mitochondrial number in the injured artery. These data are the first to demonstrate that nitrite mediates differential signaling compared to NO. They show that nitrite is a versatile regulator of mitochondrial function and number both in vivo and in vitro and suggest that nitrite-mediated biogenesis may play a protective role in the setting of vascular injury.


Assuntos
Adenilato Quinase/metabolismo , Guanilato Ciclase/metabolismo , Mitocôndrias/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Nitrito de Sódio/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/genética , Administração Oral , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/enzimologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/enzimologia , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Masculino , Mitocôndrias/enzimologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Cultura Primária de Células , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Nitrito de Sódio/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
PLoS One ; 7(5): e37699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629444

RESUMO

Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.


Assuntos
DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação para Baixo , Mitocôndrias/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/genética , Ratos
20.
Cancer Res ; 72(11): 2791-801, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22472122

RESUMO

Administration of high-dose interleukin-2 (HDIL-2) has durable antitumor effects in 5% to 10% of patients with melanoma and renal cell carcinoma. However, treatment is often limited by side effects, including reversible, multiorgan dysfunction characterized by a cytokine-induced systemic autophagic syndrome. Here, we hypothesized that the autophagy inhibitor chloroquine would enhance IL-2 immunotherapeutic efficacy and limit toxicity. In an advanced murine metastatic liver tumor model, IL-2 inhibited tumor growth in a dose-dependent fashion. These antitumor effects were significantly enhanced upon addition of chloroquine. The combination of IL-2 with chloroquine increased long-term survival, decreased toxicity associated with vascular leakage, and enhanced immune cell proliferation and infiltration in the liver and spleen. HDIL-2 alone increased serum levels of HMGB1, IFN-γ, IL-6, and IL-18 and also induced autophagy within the liver and translocation of HMGB1 from the nucleus to the cytosol in hepatocytes, effects that were inhibited by combined administration with chloroquine. In tumor cells, chloroquine increased autophagic vacuoles and LC3-II levels inhibited oxidative phosphorylation and ATP production and promoted apoptosis, which was associated with increased Annexin-V(+)/propidium iodide (PI)(-) cells, cleaved PARP, cleaved caspase-3, and cytochrome c release from mitochondria. Taken together, our findings provide a novel clinical strategy to enhance the efficacy of HDIL-2 immunotherapy for patients with cancer.


Assuntos
Autofagia/fisiologia , Interleucina-2/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Feminino , Proteína HMGB1/metabolismo , Imunoterapia , Neoplasias Hepáticas Experimentais/mortalidade , Neoplasias Hepáticas Experimentais/secundário , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa