Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(6): 2313-25, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392662

RESUMO

We previously demonstrated that sodium butyrate is neuroprotective in Huntington's disease (HD) mice and that this therapeutic effect is associated with increased expression of mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1/DUSP1). Here we show that enhancing MKP-1 expression is sufficient to achieve neuroprotection in lentiviral models of HD. Wild-type MKP-1 overexpression inhibited apoptosis in primary striatal neurons exposed to an N-terminal fragment of polyglutamine-expanded huntingtin (Htt171-82Q), blocking caspase-3 activation and significantly reducing neuronal cell death. This neuroprotective effect of MKP-1 was demonstrated to be dependent on its enzymatic activity, being ablated by mutation of its phosphatase domain and being attributed to inhibition of specific MAP kinases (MAPKs). Overexpression of MKP-1 prevented the polyglutamine-expanded huntingtin-induced activation of c-Jun N-terminal kinases (JNKs) and p38 MAPKs, whereas extracellular signal-regulated kinase (ERK) 1/2 activation was not altered by either polyglutamine-expanded Htt or MKP-1. Moreover, mutants of MKP-1 that selectively prevented p38 or JNK binding confirmed the important dual contributions of p38 and JNK regulation to MKP-1-mediated neuroprotection. These results demonstrate additive effects of p38 and JNK MAPK inhibition by MKP-1 without consequence to ERK activation in this striatal neuron-based paradigm. MKP-1 also provided neuroprotection in vivo in a lentiviral model of HD neuropathology in rat striatum. Together, these data extend previous evidence that JNK- and p38-mediated pathways contribute to HD pathogenesis and, importantly, show that therapies simultaneously inhibiting both JNK and p38 signaling pathways may lead to improved neuroprotective outcomes.


Assuntos
Fosfatase 1 de Especificidade Dupla/biossíntese , Doença de Huntington/enzimologia , Doença de Huntington/prevenção & controle , MAP Quinase Quinase 4/antagonistas & inibidores , Fármacos Neuroprotetores/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Células Cultivadas , Feminino , MAP Quinase Quinase 4/metabolismo , Camundongos , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
J Neurochem ; 111(2): 460-72, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19686238

RESUMO

Hippocalcin is a neuronal calcium sensor protein previously implicated in regulating neuronal viability and plasticity. Hippocalcin is the most highly expressed neuronal calcium sensor in the medium spiny striatal output neurons that degenerate selectively in Huntington's disease (HD). We have previously shown that decreased hippocalcin expression occurs in parallel with the onset of disease phenotype in mouse models of HD. Here we show by in situ hybridization histochemistry that hippocalcin RNA is also diminished by 63% in human HD brain. These findings lead us to hypothesize that diminished hippocalcin expression might contribute to striatal neurodegeneration in HD. We tested this hypothesis by assessing whether restoration of hippocalcin expression would decrease striatal neurodegeneration in cellular models of HD comprising primary striatal neurons exposed to mutant huntingtin, the mitochondrial toxin 3-nitropropionic acid or an excitotoxic concentration of glutamate. Counter to our hypothesis, hippocalcin expression did not improve the survival of striatal neurons under these conditions. Likewise, expression of hippocalcin together with interactor proteins including the neuronal apoptosis inhibitory protein did not increase the survival of striatal cells in cellular models of HD. These results indicate that diminished hippocalcin expression does not contribute to HD-related neurodegeneration.


Assuntos
Núcleo Caudado/patologia , Hipocalcina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Neurônios/patologia , 3-Hidroxiacil-CoA Desidrogenases/genética , Animais , Núcleo Caudado/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Ácido Glutâmico/toxicidade , Hipocalcina/genética , Humanos , Rim/citologia , Lentivirus/genética , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteína Inibidora de Apoptose Neuronal/genética , Neurônios/metabolismo , Neurotoxinas/metabolismo , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa