RESUMO
AIMS: Previous data suggest that expression of transcription factors FoxG1 and Olig-2 can separate hotspot histone H3 family member 3A (H3F3A)-mutant tumours in paediatric glioma. We evaluated their prognostic potential and feasibility for identifying H3F3A-mutant tumours among IDH-mutant/wild-type gliomas. METHODS: Immunohistochemistry of FoxG1/Olig-2 and α-thalassaemia/mental-retardation-syndrome-X-linked gene (ATRX) in 471 cases of diffuse gliomas and molecular determination of IDH, H3F3A, MGMT and 1p/19 codeletion status. RESULTS: Mean percentage of FoxG1-positive tumour cells increased from 17% in WHO grade II to over 21% in grade III to 37% in grade IV tumours, whereas mean Olig-2 indices decreased from 29% to 28% to 17% respectively. FoxG1 indices were similar in astrocytic and oligodendroglial tumours, whereas Olig-2 indices were increased in oligodendrogliomas compared to astrocytic tumours (n = 451, P < 0.0001). FoxG1-positive nuclei were significantly reduced in IDH and H3F3A K27-mutant tumours, whereas Olig-2-positive nuclei were significantly reduced in IDH-wild-type and H3F3A G34-mutant tumours. Among IDH-mutant tumours, mean Olig-2 index was significantly higher in 1p/19q codeleted tumours (mean: 43%) compared to IDH-mutant tumours with ATRX loss (mean: 23%, P < 0.0001). A significantly better outcome was first suggested for FoxG1low tumours (n = 212, log rank P = 0.0132) and Olig-2high tumours (n = 203, log-rank P = 0.0011) based on classification and regression tree determined cutoffs, but this was not confirmed by multivariate analysis including IDH mutation, WHO grade, ATRX status and age. CONCLUSIONS: While the combined FoxG1/Olig-2 profile may discriminate H3F3A K27- and G34-mutant tumours and define a prognostically favourable subset in IDH-mutant gliomas, our data show that labelling indices of these transcription factors overlap with adult IDH-mutant and wild-type tumour classes.
Assuntos
Neoplasias Encefálicas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Criança , Feminino , Fatores de Transcrição Forkhead/genética , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Prognóstico , Taxa de Sobrevida , Adulto JovemAssuntos
Traumatismos em Atletas/terapia , Luxação do Ombro , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/cirurgia , Parafusos Ósseos , Moldes Cirúrgicos , Clavícula/lesões , Humanos , Ligamentos Articulares/anatomia & histologia , Masculino , Métodos , Dispositivos de Fixação Ortopédica , Complicações Pós-Operatórias , Próteses e Implantes , Radiografia , Luxação do Ombro/diagnóstico por imagem , Luxação do Ombro/cirurgia , Luxação do Ombro/terapia , Articulação do Ombro , Estresse Mecânico , Instrumentos CirúrgicosRESUMO
We have used identified neurons from the abdominal ganglion of the mollusc Aplysia to construct and analyze two circuits in vitro. Each of these circuits was capable of producing two patterns of persistent activity; that is, they had bistable output states. The output could be switched between the stable states by a brief, external input. One circuit consisted of cocultured L10 and left upper quadrant (LUQ) neurons that formed reciprocal, inhibitory connections. In one stable state L10 was active and the LUQ was quiescent, whereas in the other stable state L10 was quiescent and the LUQ was active. A second circuit consisted of co-cultured L7 and L12 neurons that formed reciprocal, excitatory connections. In this circuit, both cells were quiescent in one stable state and both cells fired continuously in the other state. Bistable output in both circuits resulted from the nonlinear firing characteristics of each neuron and the feedback between the two neurons. We explored how the stability of the neuronal output could be controlled by the background currents injected into each neuron. We observed a relatively well-defined range of currents for which bistability occurred, consistent with the values expected from the measured strengths of the connections and a simple model. Outside of the range, the output was stable in only a single state. These results suggest how stable patterns of output are produced by some in vivo circuits and how command neurons from higher neural centers may control the activity of these circuits. The criteria that guided us in forming our circuits in culture were derived from theoretical studies on the properties of certain neuronal network models (e.g., Hopfield, J. J. 1984. Proc. Natl. Acad. Sci. USA. 81:3088-3092). Our results show that circuits consisting of only two co-cultured neurons can exhibit bistable output states of the form hypothesized to occur in populations of neurons.
Assuntos
Gânglios/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Aplysia , Células Cultivadas , Condutividade Elétrica , Eletrofisiologia/métodos , Neurônios/citologia , Neurônios/ultraestruturaRESUMO
Spontaneous or odor-induced oscillations in local field potential are a general feature of olfactory processing centers in a large number of vertebrate and invertebrate species. The ubiquity of such oscillations in the olfactory bulb of vertebrates and analogous structures in arthropods and mollusks suggests that oscillations are fundamental to the computations performed during processing of odor stimuli. Diffusible intercellular messengers such as nitric oxide (NO) and carbon monoxide (CO) also are associated with central olfactory structures in a wide array of species. We use the procerebral (PC) lobe of the terrestrial mollusk Limax maximus to demonstrate a role for NO and CO in the oscillatory dynamics of the PC lobe: synthesizing enzymes for NO and CO are associated with the PC lobes of Limax, application of NO to the Limax PC lobe increases the local field potential oscillation frequency, whereas block of NO synthesis slows or stops the oscillation, the bursting cells of the PC lobe that drive the field potential oscillation are driven to higher burst frequency by application of NO, the nonbursting cells of the PC lobe receive trains of inhibitory postsynaptic potentials, presumably from bursting cells, due to application of NO, and application of CO to the PC lobe by photolysis of caged CO results in an increase in oscillation frequency proportional to CO dosage.
Assuntos
Monóxido de Carbono/farmacologia , Di-Hidrolipoamida Desidrogenase/análise , Interneurônios/fisiologia , Óxido Nítrico/farmacologia , Odorantes , Animais , Gânglios dos Invertebrados/enzimologia , Gânglios dos Invertebrados/fisiologia , Heme Oxigenase (Desciclizante)/análise , Heme Oxigenase-1 , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Cinética , Moluscos , Fibras Nervosas/enzimologia , Fibras Nervosas/fisiologia , Condutos Olfatórios/fisiologia , OscilometriaRESUMO
1. Left upper quadrant (LUQ) cells isolated from the abdominal ganglion of Aplysia were maintained in culture to study how the cellular and synaptic properties of individual neurons contribute to the generation of patterns of electrical activity by neuronal ensembles. 2. Conventional microelectrodes were used to examine the spiking characteristics of individually cultured LUQ cells in vitro and to characterize their synaptic interactions. 3. In vitro, in contrast to in situ, LUQ neurons innervate other LUQ neurons. Intracellular recordings from pairs of LUQ cells showed that the prevalent type of postsynaptic potential was purely inhibitory. The other type of response was a dual-action postsynaptic potential, with inhibition followed by a delayed, slow excitation. 4. We established a set of criteria for the use of multiple-site optical recording techniques, in combination with impermeant probes of membrane potential, to observe the patterns of electrical activity generated by ensembles of co-cultured LUQ cells. 5. The spiking activity of individual cells within the neuronal ensembles was detected by means of the change in optical absorption of cells that were vitally stained with the dye RH155. The change in absorption was typically delta A congruent to 4 X 10(-4) per spike. We achieved a signal-to-noise (peak-to-peak) ratio of approximately 10 for a 50 X 50-microns photodetector field and an incident intensity of approximately 10 mW/cm2, close to the theoretical limit. 6. These conditions permitted, for the first time, continuous optical recording from cultured neurons for periods of up to 3 h with no discernible photodynamic damage or photobleaching. This long-term optical recording permitted examination of the different patterns of electrical activity generated by individual neuronal ensembles under several different experimental conditions. 7. An elaborate tracery of regenerated neurites present in these cultures resulted in individual photodetectors recording simultaneously the activity of multiple neurons. We reconstructed the temporal firing patterns for individual neurons within ensembles even with all the neurons active simultaneously and determined the functional connections in the ensemble by analyzing the temporal relationships between firing patterns of individual neurons. Excitatory as well as inhibitory functional interactions could be observed within the neuronal ensemble, the latter after the tonic activity of the neurons was increased by reducing the extracellular [Mg2+]. 8. Examination of the optical data from ensembles constructed from identified cells having characteristic physiological responses allowed us to address the question of how cellular and synaptic properties affect the patterns of electrical activity generated by neuronal ensembles.(ABSTRACT TRUNCATED AT 400 WORDS)
Assuntos
Neurônios/fisiologia , Óptica e Fotônica , Animais , Aplysia , Células Cultivadas , Eletrofisiologia , Luz , Métodos , Vias Neurais/fisiologia , Sinapses/fisiologia , Fatores de TempoRESUMO
We used multiple-site optical recording methods, in conjunction with impermeant molecular probes of the cell membrane potential, to record the electrical activity of model neural circuits in vitro. Our system consisted of co-cultured pairs of left upper quadrant neurons from the abdominal ganglion of the marine gastropod Aplysia. These neurons interact via inhibitory synapses in vitro. Photodynamic damage to the neurons was essentially eliminated over the time course of the measurements, approximately less than 30 s, by removing oxygen from the recording solution and replacing it with argon. This procedure did not affect the synaptic interactions. We observed repetitive spiking activity in single-trace optical recordings with a maximum signal-to-noise ratio per detector of approximately 50. Individual optical signals that corresponded to either the activity of the presynaptic neuron or that of the postsynaptic neuron were clearly identified. This allowed us to monitor the activity of synaptically interacting neurons, observed as a reduction of the firing rate of the postsynaptic cell after activity of the presynaptic cell. Our results demonstrate that optical methods are appropriate for recording prolonged, asynchronous activity from synaptically interacting neurons in culture.
Assuntos
Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Aplysia , Células Cultivadas , Neurônios/citologia , Potenciometria/métodosRESUMO
Aplysia californica interneurone L10 forms a set of presynaptic connections with many postsynaptic 'follower' cells in the abdominal ganglion. These followers do not connect back to L10. The present study tests whether the direction and sign of these connections are obligatory and are reconstructed when neuronal processes regenerate in vitro. L10 was co-cultured with one of six different followers and two non-followers. 1. In vitro connections that preserve the sign of those formed in vivo were made by L10 onto neurones L11, L12 and L13. The connections consisted of inhibitory postsynaptic potentials (IPSPs) with characteristic fast and slow components. 2. In vitro connections that did not preserve the sign of connections found in vivo were made by L10 onto R15, R16 and L7. Neurones R15 and R16 receive excitatory inputs from L10 in vivo and L7 receives a dual-action input in vivo, with inhibition followed by excitation. A purely inhibitory connection from L10 was formed in vitro onto all these cells. 3. Connections that have never been observed in vivo in terms of both direction and sign were formed in vitro. Followers L7, L11, L12, L13 and R16 and non-follower L14A formed novel connections onto L10. All these connections were inhibitory and some were strong. For example, IPSPs with a magnitude of 20 mV were observed in L10 following a single action potential in L13. Our results show that identified Aplysia neurones can form stereotyped specific connections in vitro. The specificity is different from that in the intact ganglion. The ubiquity of novel connections suggests that restrictions imposed on synaptogenesis in the animal are distinct from those regulating synapse formation in culture.
Assuntos
Aplysia , Comunicação Celular , Interneurônios/citologia , Animais , Aplysia/citologia , Aplysia/fisiologia , Células Cultivadas , Eletrofisiologia , Gânglios/citologia , Interneurônios/fisiologia , Sinapses/fisiologiaRESUMO
We report a procedure to detect electrical activity in cultured neurons by changes in their intrinsic optical properties. Using dark-field microscopy to detect scattered light, we observe an optical signal that is linearly proportional to the change in the membrane potential. Action potentials can be recorded without signal averaging. We use the dark-field method to show that there are substantial time delays between activity in the soma and in fine distal processes of identified Aplysia neurons. The biophysical basis for the change in optical properties of the neuron was deduced from measurements of the angular distribution of scattered laser light. An analysis of the data indicates that the radial component of the index of refraction of the membrane increases and the tangential components decrease concomitant with an increase in membrane potential. This is suggestive of a rapid reorientation of dipoles in the membrane during an action potential.