RESUMO
This study investigates the impact of the alteration of the monolignol biosynthesis pathway on the establishment of the in vitro interaction of poplar roots either with a mutualistic ectomycorrhizal fungus or with a pathogenic root-knot nematode. Overall, the five studied transgenic lines downregulated for caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) or both COMT and CAD displayed a lower mycorrhizal colonisation percentage, indicating a lower ability for establishing mutualistic interaction than the wild-type. The susceptibility to root-knot nematode infection was variable in the five lines, and the CAD-deficient line was found to be less susceptible than the wild-type. We discuss these phenotypic differences in the light of the large shifts in the metabolic profile and gene expression pattern occurring between roots of the CAD-deficient line and wild-type. A role of genes related to trehalose metabolism, phytohormones, and cell wall construction in the different mycorrhizal symbiosis efficiency and nematode sensitivity between these two lines is suggested. Overall, these results show that the alteration of plant metabolism caused by the repression of a single gene within phenylpropanoid pathway results in significant alterations, at the root level, in the response towards mutualistic and pathogenic associates. These changes may constrain plant fitness and biomass production, which are of economic importance for perennial industrial crops such as poplar.
Assuntos
Micorrizas , Nematoides , Populus , Animais , Regulação da Expressão Gênica de Plantas , Lignina , SimbioseRESUMO
One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.
Assuntos
Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Populus/genética , Populus/parasitologia , Tylenchoidea/fisiologia , Animais , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Lignina/metabolismo , Floema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Tumores de Planta/genética , Feixe Vascular de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Xilema/metabolismoRESUMO
Monolignols are the building blocks for lignin polymerization in the apoplastic domain. Monolignol biosynthesis, transport, storage, glycosylation, and deglycosylation are the main biological processes partaking in their homeostasis. In Arabidopsis thaliana, members of the uridine diphosphate-dependent glucosyltransferases UGT72E and UGT72B subfamilies have been demonstrated to glycosylate monolignols. Here, the poplar UGT72 family, which is clustered into four groups, was characterized: Group 1 UGT72AZ1 and UGT72AZ2, homologs of Arabidopsis UGT72E1-3, as well as group 4 UGT72B37 and UGT72B39, homologs of Arabidopsis UGT72B1-3, glycosylate monolignols. In addition, promoter-GUS analyses indicated that poplar UGT72 members are expressed within vascular tissues. At the subcellular level, poplar UGT72s belonging to group 1 and group 4 were found to be associated with the nucleus and the endoplasmic reticulum. However, UGT72A2, belonging to group 2, was localized in bodies associated with chloroplasts, as well as possibly in chloroplasts. These results show a partial conservation of substrate recognition between Arabidopsis and poplar homologs, as well as divergent functions between different groups of the UGT72 family, for which the substrates remain unknown.
Assuntos
Glucosiltransferases/genética , Proteínas de Plantas/genética , Populus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosiltransferases/metabolismo , Glicosídeos/genética , Glicosídeos/metabolismo , Glicosilação , Lignina/genética , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Especificidade por SubstratoRESUMO
MAIN CONCLUSION: The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.
Assuntos
Cannabis/genética , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Cannabis/ultraestrutura , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/metabolismo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/ultraestrutura , Transporte ProteicoRESUMO
BACKGROUND: Lignin and lignans are both derived from the monolignol pathway. Despite the similarity of their building blocks, they fulfil different functions in planta. Lignin strengthens the tissues of the plant, while lignans are involved in plant defence and growth regulation. Their biosyntheses are tuned both spatially and temporally to suit the development of the plant (water conduction, reaction to stresses). We propose to study the general molecular events related to monolignol-derived product biosynthesis, especially lignin. It was previously shown that the growing hemp hypocotyl (between 6 and 20 days after sowing) is a valid system to study secondary growth and the molecular events accompanying lignification. The present work confirms the validity of this system, by using it to study the regulation of lignin and lignan biosynthesis. Microscopic observations, lignin analysis, proteomics, together with in situ laccase and peroxidase activity assays were carried out to understand the dynamics of lignin synthesis during the development of the hemp hypocotyl. RESULTS: Based on phylogenetic analysis and targeted gene expression, we suggest a role for the hemp dirigent and dirigent-like proteins in lignan biosynthesis. The transdisciplinary approach adopted resulted in the gene- and protein-level quantification of the main enzymes involved in the biosynthesis of monolignols and their oxidative coupling (laccases and class III peroxidases), in lignin deposition (dirigent-like proteins) and in the determination of the stereoconformation of lignans (dirigent proteins). CONCLUSIONS: Our work sheds light on how, in the growing hemp hypocotyl, the provision of the precursors needed to synthesize the aromatic biomolecules lignin and lignans is regulated at the transcriptional and proteomic level.
Assuntos
Cannabis/metabolismo , Expressão Gênica , Hipocótilo/metabolismo , Lignanas/biossíntese , Lignina/biossíntese , Cannabis/genética , Lacase/genética , Lacase/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , ProteômicaRESUMO
MAIN CONCLUSION: The application of jasmonic acid results in an increased secondary growth, as well as additional secondary phloem fibres and higher lignin content in the hypocotyl of textile hemp (Cannabis sativa L.). Secondary growth provides most of the wood in lignocellulosic biomass. Textile hemp (Cannabis sativa L.) is cultivated for its phloem fibres, whose secondary cell wall is rich in crystalline cellulose with a limited amount of lignin. Mature hemp stems and older hypocotyls are characterised by large blocks of secondary phloem fibres which originate from the cambium. This study aims at investigating the role of exogenously applied jasmonic acid on the differentiation of secondary phloem fibres. We show indeed that the exogenous application of this plant growth regulator on young hemp plantlets promotes secondary growth, differentiation of secondary phloem fibres, expression of lignin-related genes, and lignification of the hypocotyl. This work paves the way to future investigations focusing on the molecular network underlying phloem fibre development.
Assuntos
Cannabis/crescimento & desenvolvimento , Celulose/metabolismo , Ciclopentanos/farmacologia , Lignina/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Biomassa , Câmbio/efeitos dos fármacos , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Cannabis/efeitos dos fármacos , Cannabis/genética , Cannabis/metabolismo , Parede Celular/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Lignina/análise , Floema/efeitos dos fármacos , Floema/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Têxteis , Madeira/metabolismoRESUMO
BACKGROUND: The fasciclin-like arabinogalactan proteins (FLAs) belong to the arabinogalactan protein (AGP) superfamily and are known to play different physiological roles in plants. This class of proteins was shown to participate in plant growth, development, defense against abiotic stresses and, notably, cell wall biosynthesis. Although some studies are available on the characterization of FLA genes from different species, both woody and herbaceous, no detailed information is available on the FLA family of textile hemp (Cannabis sativa L.), an economically important fibre crop. RESULTS: By searching the Cannabis genome and EST databases, 23 CsaFLAs have been here identified which are divided into four phylogenetic groups. A real-time qPCR analysis performed on stem tissues (isolated bast fibres and shivs sampled at three heights), hypocotyls (6-9-12-15-17-20 days-old), whole seedlings, roots, leaves and female/male flowers of the monoecious fibre variety Santhica 27, indicates that the identified FLA genes are differentially expressed. Interestingly, some hemp FLAs are expressed during early phases of fibre growth (elongation), while others are more expressed in the middle and base of the stem and thus potentially involved in secondary cell wall formation (fibre thickening). The bioinformatic analysis of the promoter regions shows that the FLAs upregulated in the younger regions of the stem share a conserved motif related to flowering control and regulation of photoperiod perception. The promoters of the FLA genes expressed at higher levels in the older stem regions, instead, share a motif putatively recognized by MYB3, a transcriptional repressor belonging to the MYB family subgroup S4. CONCLUSIONS: These results point to the existence of a transcriptional network fine-tuning the expression of FLA genes in the older and younger regions of the stem, as well as in the bast fibres/shivs of textile hemp. In summary, our study paves the way for future analyses on the biological functions of FLAs in an industrially relevant fibre crop.
Assuntos
Cannabis/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Mucoproteínas/genética , Motivos de Aminoácidos , Sequência Conservada , Mucoproteínas/química , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Domínios ProteicosRESUMO
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
Assuntos
Parede Celular/genética , Genes de Plantas , Medicago sativa/genética , Medicago sativa/fisiologia , Especificidade de Órgãos/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago sativa/citologia , Medicago sativa/enzimologia , Medicago truncatula/enzimologia , Peroxidase/química , Peroxidase/metabolismo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , TemperaturaRESUMO
Introduction: Plant A/T-rich protein and zinc-binding protein (PLATZ) are plant-specific transcription factors playing a role in plant development and stress response. To assess the role of PLATZs in vascular system development and wood formation in poplar, a functional study for PtaPLATZ18, whose expression was associated with the xylem, was carried out. Methods: Poplar dominant repressor lines for PtaPLATZ18 were produced by overexpressing a PtaPLATZ18-SRDX fusion. The phenotype of three independent transgenic lines was evaluated at morphological, biochemical, and molecular levels and compared to the wild type. Results: The PtaPLATZ18-SRDX lines showed increased plant height resulting from higher internode length. Besides, a higher secondary xylem thickness was also evidenced in these dominant repression lines as compared to the wild type suggesting an activation of cambial activity. A higher amount of lignin was evidenced within wood tissue as compared to the wild type, indicating an alteration in cell wall composition within xylem cell types. This latter phenotype was linked to an increased expression of genes involved in lignin biosynthesis and polymerization. Discussion: The phenotype observed in the PtaPLATZ18-SRDX lines argues that this transcription factor targets key regulators of plant growth and vascular tissues development.
RESUMO
Plants have developed the capacity to produce a diversified range of specialized metabolites. The glycosylation of those metabolites potentially decreases their toxicity while increasing their stability and their solubility, modifying their transport and their storage. The UGT, forming the largest glycosyltransferase superfamily in plants, combine enzymes that glycosylate mainly hormones and phenylpropanoids by using UDP-sugar as a sugar donor. Particularly, members of the UGT72 family have been shown to glycosylate the monolignols and the flavonoids, thereby being involved in their homeostasis. First, we explore primitive UGTs in algae and liverworts that are related to the angiosperm UGT72 family and their role in flavonoid homeostasis. Second, we describe the role of several UGT72s glycosylating monolignols, some of which have been associated with lignification. In addition, the role of other UGT72 members that glycosylate flavonoids and are involved in the development and/or stress response is depicted. Finally, the importance to explore the subcellular localization of UGTs to study their roles in planta is discussed.
RESUMO
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Assuntos
Populus , Antocianinas/metabolismo , Regulação para Baixo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Necrose , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismoRESUMO
Oxidative stress is a cellular threat which puts at risk the productivity of most of crops valorized by humankind in terms of food, feed, biomaterial, or bioenergy. It is therefore of crucial importance to understand the mechanisms by which plants mitigate the deleterious effects of oxidizing agents. Glycosylation of antioxidant molecules and phytohormones modifies their chemical properties as well as their cellular and histological repartition. This review emphasizes the mechanisms and the outcomes of this conjugation reaction on plant ability to face growing conditions favoring oxidative stress, in mirror with the activity of deglycosylating enzymes. Pioneer evidence bridging flavonoid, glycosylation, and redox homeostasis paved the way for numerous functional analyses of UDP-glycosyltransferases (UGTs), such as the identification of their substrates and their role to circumvent oxidative stress resulting from various environmental challenges. (De)glycosylation appears as a simple chemical reaction regulating the biosynthesis and/or the activity of a myriad of specialized metabolites partaking in response to pathogen and abiotic stresses. This outcome underlies the possibility to valorize UGTs potential to upgrade plant adaptation and fitness in a rising context of sub-optimal growing conditions subsequent to climate change.
RESUMO
Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.
Assuntos
Biocombustíveis , Lignina , Biomassa , Vias Biossintéticas , Parede Celular , Produtos AgrícolasRESUMO
We here provide an updated de novo transcriptome of the hemp textile variety Santhica 27. The assembly was performed by merging the reads obtained previously on a time-series relative to the hypocotyl development and on bast fibers isolated from internodes of adult plants at different heights with those obtained from a newly performed transcriptome study on the hypocotyl in response to jasmonic acid treatment. More specifically, hypocotyls aged 15 days were treated with jasmonic acid and collected 3 and 5 days after the application of the plant growth regulator. RNA-Seq was then performed on the treated hypocotyls. The transcriptome reported here will be a useful resource for those scientists engaged in the study of bast fiber development, as well as cell wall biosynthesis in textile hemp. The transcriptome is also useful for molecular studies relative to the synthesis of secondary metabolites, such as phenolic compounds (e.g. flavonoids) and lignans/lignanamides.
RESUMO
Phytohormones are crucial molecules regulating plant development and responses to environmental challenges, including abiotic stresses, microbial and insect attacks. Most notably, phytohormones play important roles in the biosynthesis of lignocellulosics. Jasmonates are involved in secondary growth and secondary metabolism, such as phenylpropanoids and lignin biosyntheses. At the physiological and molecular levels, the actions of phytohormones depend on subtle concentration changes, as well as antagonistic equilibria between two or more of these molecules. In this article, we investigate the consequences of jasmonic acid (JA) spraying on young hemp hypocotyls. First, we show that JA application results in changes in the monomeric composition of lignin. Second, we highlight that, five days after application, JA leads to an increase in salicylic acid (SA) content in hemp hypocotyls. These results are discussed in the light of the known antagonism between JA and SA at both the physiological and molecular levels.
Assuntos
Cannabis/metabolismo , Ciclopentanos/farmacologia , Hipocótilo/metabolismo , Lignina/metabolismo , Oxilipinas/farmacologia , Cannabis/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Ácido Salicílico/farmacologiaRESUMO
Soil salinity is a serious threat to agriculture, because it compromises biomass production and plant productivity, by negatively affecting the vegetative growth and development of plants. Fiber crops like textile hemp (Cannabis sativa L.) are important natural resources that provide, sustainably, both cellulosic and woody fibers for industry. In this work, the response to salinity (200 mM NaCl) of a fiber variety of hemp (Santhica 27) was studied using quantitative real-time PCR. The responses of plantlets aged 15 days were analyzed by microscopy and by measuring the changes in expression of cell wall-related genes, as well as in the general response to exogenous constraints. The results presented here show that a different response is present in the hemp hypocotyls and leaves. In the leaves, genes coding for heat shock proteins were significantly upregulated, together with a phytohormone-related transcript (ethylene-responsive factor 1 ERF1) and genes involved in secondary cell wall biosynthesis (cellulose synthase CesA4, fasciclin-like arabinogalactan proteins FLA10 and FLA8). Moreover, a tendency towards upregulation was also observed in the leaves for genes involved in lignification (4CL, CAD, PAL); a finding that suggests growth arrest. In the hypocotyl, the genes involved in lignification did not show changes in expression, while a gene related to expansion (expansin EXPA8), as well as transcripts coding for calcium-dependent lipid-binding family proteins (CALB), were upregulated. Microscopic analyses on the hypocotyl cross sections revealed changes in the vascular tissues of salt-exposed plantlets, where the lumen of xylem vessels was reduced. The gene expression results show that a different response is present in the hemp hypocotyls and leaves. The data presented contribute to our understanding of the regulatory gene network in response to salinity in different tissues of an important fiber crop.
RESUMO
Fibre crops are important natural resources, as they sustainably provide bast fibres, an economically-valuable raw material used in the textile and biocomposite sectors. Among fibre crops, textile hemp (Cannabis sativa L.) is appreciated for its long and strong gelatinous bast fibres. The stem of fibre crops is a useful system for cell wall-oriented studies, because it shows a strong tissue polarity with a lignified inner core and a cellulosic hypolignified cortex, as well as a basipetal lignification gradient. Along the stem axis of fibre crops, a specific region, denoted snap point, marks the transition from elongation (above it) to fibre thickening (below it). After empirically determining the snap point by tilting the plant, we divided the stem segment containing it into three non-overlapping consecutive regions measuring 1 cm each, and carried out targeted RT-qPCR on cell wall-related genes separately, in outer and inner tissues. Different gene clusters can be observed, two of which are the major gene groups, i.e., one group with members expressed at higher levels in the inner tissues, and one group whose genes are more expressed in the cortex. The present results provide a molecular validation that the snap point is characterised by a gradient of events associated with the shift from fibre elongation to thickening.
RESUMO
Bast fibres are long extraxylary cells which mechanically support the phloem and they are divided into xylan- and gelatinous-type, depending on the composition of their secondary cell walls. The former, typical of jute/kenaf bast fibres, are characterized by the presence of xylan and a high degree of lignification, while the latter, found in tension wood, as well as flax, ramie and hemp bast fibres, have a high abundance of crystalline cellulose. During their differentiation, bast fibres undergo specific developmental stages: the cells initially elongate rapidly by intrusive growth, subsequently they cease elongation and start to thicken. The goal of the present study is to provide a transcriptomic close-up of the key events accompanying bast fibre development in textile hemp (Cannabis sativa L.), a fibre crop of great importance. Bast fibres have been sampled from different stem regions. The developmental stages corresponding to active elongation and cell wall thickening have been studied using RNA-Seq. The results show that the fibres sampled at each stem region are characterized by a specific transcriptomic signature and that the major changes in cell wall-related processes take place at the internode containing the snap point. The data generated also identify several interesting candidates for future functional analysis.
Assuntos
Cannabis/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Cannabis/química , Cannabis/genética , Parede Celular/química , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Xilanos/genéticaRESUMO
The structure and the activity of proteins are often regulated by transient or stable post- translational modifications (PTM). Different from well-known, abundant modifications such as phosphorylation and glycosylation some modifications are limited to one or a few proteins across a broad range of related species. Although few examples of the latter type are known, the evolutionary conservation of these modifications and the enzymes responsible for their synthesis suggest an important physiological role. Here, the first observation of a new, fold-directing PTM is described. During the analysis of alfalfa cell wall proteins a -2Da mass shift was observed on phenylalanine residues in the repeated tetrapeptide FxxY of the beta-subunit of polygalacturonase. This modular protein is known to be involved in developmental and stress-responsive processes. The presence of this modification was confirmed using in-house and external datasets acquired by different commonly used techniques in proteome studies. Based on these analyses it was found that all identified phenylalanine residues in the sequence FxxY of this protein were modified to α,ß-didehydro-Phe (ΔPhe). Besides showing the reproducible identification of ΔPhe in different species arguments that substantiate the fold-determining role of ΔPhe are given.
Assuntos
Parede Celular/enzimologia , Medicago sativa/enzimologia , Fenilalanina/análogos & derivados , Poligalacturonase/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Glicosilação , Fenilalanina/química , Fosforilação , Poligalacturonase/metabolismo , Proteoma , ProteômicaRESUMO
Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e., elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e., 6-9-15-20 days after sowing) to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, ß-galactosidases, and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).