RESUMO
After peripheral nerve injury, Schwann cells (SCs) are crucially involved in several steps of the subsequent regenerative processes, such as the Wallerian degeneration. They promote lysis and phagocytosis of myelin, secrete numbers of neurotrophic factors and cytokines, and recruit macrophages for a biological debridement. However, nerve injuries with a defect size of >1 cm do not show proper tissue regeneration and require a surgical nerve gap reconstruction. To find a sufficient alternative to the current gold standard-the autologous nerve transplant-several cell-based therapies have been developed and were experimentally investigated. One approach aims on the use of adipose tissue stem cells (ASCs). These are multipotent mesenchymal stromal cells that can differentiate into multiple phenotypes along the mesodermal lineage, such as osteoblasts, chondrocytes, and myocytes. Furthermore, ASCs also possess neurotrophic features, that is, they secrete neurotrophic factors like the nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, ciliary neurotrophic factor, glial cell-derived neurotrophic factor, and artemin. They can also differentiate into the so-called Schwann cell-like cells (SCLCs). These cells share features with naturally occurring SCs, as they also promote nerve regeneration in the periphery. This review gives a comprehensive overview of the use of ASCs in peripheral nerve regeneration and peripheral nerve tissue engineering both in vitro and in vivo. While the sustainability of differentiation of ASCs to SCLCs in vivo is still questionable, ASCs used with different nerve conduits, such as hydrogels or silk fibers, have been shown to promote nerve regeneration.
Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/cirurgia , Coelhos , Ratos , Células de Schwann/fisiologia , Células de Schwann/transplante , Neuropatia Ciática/cirurgia , Neuropatia Ciática/terapia , Engenharia Tecidual , Alicerces Teciduais , Transplante AutólogoRESUMO
INTRODUCTION: We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. MATERIALS AND METHODS: An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹65) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. RESULTS: In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹65 and bFGF. CONCLUSIONS: In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.