Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Macromol Rapid Commun ; 44(21): e2300335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666003

RESUMO

Thermally conductive polymeric composites are promising for heat management in microelectronic devices. This work presents a binary-hybrid composite of boron nitride (BN) nanoparticles and micro-diamond (D) fillers in an elastomeric polyurethane (PU) matrix which can be three- dimensionally printed to produce a highly flexible and self-supporting structure. The research shows that a combination of 16.7 wt% BN and 16.7 wt% D results in a robust network within the polymer matrix to improve the tensile modulus more than nine times with respect to neat PU. Significantly, the hybrid matrix enhances the thermal conductivity by more than two times when compared to neat PU. The enhancement in mechanical, and thermal features make this three-dimensional printable multiscale hybrid composite suitable for flexible and stretchable microelectronic applications.


Assuntos
Materiais Dentários , Nanopartículas , Condutividade Térmica , Diamante , Polímeros , Poliuretanos
2.
Macromol Rapid Commun ; 43(6): e2200001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35065001

RESUMO

Solar induced thermal energy is a vital heat source supplementing body heat to realize thermo-to-electric energy supply for wearable electronics. Thermo-electrochemical cells, compared to the widely investigated thermoelectric generators, show greater potential in wearable applications due to the higher voltage output from low-grade heat and the increased option range of cheap and flexible electrode/electrolyte materials. A wearable photo-thermo-electrochemical cell (PTEC) is first fabricated here through the introduction of a polymer-based flexible photothermal film as a solar-absorber and hot electrode, followed by a systematic investigation of wearable device design. The as-prepared PTEC single device shows outstanding output voltage and current density of 15.0 mV and 10.8 A m-2 and 7.1 mV and 8.57 A m-2 , for the device employing p-type and n-type gel electrolytes, respectively. Benefiting from the equivalent performance in current density, a series connection containing 18 pairs of p-n PTEC devices is effectively made, which can harvest solar energy and charge supercapacitors to above 250 mV (1 sun solar illumination). Meanwhile, a watch-strap shaped flexible PTEC (eight p-n pairs) that can be worn on a wrist is fabricated and the realized voltage above 150 mV under light shows the potential for use in wearable applications.


Assuntos
Energia Solar , Dispositivos Eletrônicos Vestíveis , Eletrodos , Eletrólitos , Eletrônica
3.
Anal Chem ; 90(2): 1186-1194, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29231703

RESUMO

Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s-1, respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia de Fase Reversa/instrumentação , Metacrilatos/química , Impressão Tridimensional/instrumentação , Titânio/química , Desenho de Equipamento , Hidrodinâmica , Polimerização , Proteínas/isolamento & purificação
4.
Sci Rep ; 14(1): 8734, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627460

RESUMO

This research aimed to determine whether accomplished surfers could accurately perceive how changes to surfboard fin design affected their surfing performance. Four different surfboard fins, including conventional, single-grooved, and double-grooved fins, were developed using computer-aided design combined with additive manufacturing (3D printing). We systematically installed these 3D-printed fins into instrumented surfboards, which six accomplished surfers rode on waves in the ocean in a random order while blinded to the fin condition. We quantified the surfers' wave-riding performance during each surfing bout using a sport-specific tracking device embedded in each instrumented surfboard. After each fin condition, the surfers rated their perceptions of the Drive, Feel, Hold, Speed, Stiffness, and Turnability they experienced while performing turns using a visual analogue scale. Relationships between the surfer's perceptions of the fins and their surfing performance data collected from the tracking devices were then examined. The results revealed that participants preferred the single-grooved fins for Speed and Feel, followed by double-grooved fins, commercially available fins, and conventional fins without grooves. Crucially, the surfers' perceptions of their performance matched the objective data from the embedded sensors. Our findings demonstrate that accomplished surfers can perceive how changes to surfboard fins influence their surfing performance.

5.
Phys Med Biol ; 69(14)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38914107

RESUMO

Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.


Assuntos
Neoplasias Encefálicas , Imagens de Fantasmas , Impressão Tridimensional , Radiometria , Síncrotrons , Ratos , Animais , Radiometria/instrumentação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Dosagem Radioterapêutica , Método de Monte Carlo , Garantia da Qualidade dos Cuidados de Saúde , Desenho de Equipamento
6.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745911

RESUMO

The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.

7.
Transl Vis Sci Technol ; 11(6): 26, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35767274

RESUMO

Purpose: Corneal perforation is a clinical emergency that can result in blindness. Currently corneal perforations are treated either by cyanoacrylate glue which is toxic to corneal cells, or by using commercial fibrin glue for small perforations. Both methods use manual delivery which lead to uncontrolled application of the glues to the corneal surface. Therefore, there is a need to develop a safe and effective alternative to artificial adhesives. Methods: Previously, our group developed a transparent human platelet lysate (hPL)-based biomaterial that accelerated corneal epithelial cells healing in vitro. This biomaterial was further characterized in this study using rheometry and adhesive test, and a two-component delivery system was developed for its application. An animal trial (5 New Zealand white rabbits) to compare impact of the biomaterial and cyanoacrylate glue (control group) on a 2 mm perforation was conducted to evaluate safety and efficacy. Results: The hPL-based biomaterial showed higher adhesiveness compared to commercial fibrin glue. Treatment rabbits had lower pain scores and faster recovery, despite generating similar scar-forming structure compared to controls. No secondary corneal ulcer was generated in rabbits treated with the bio-adhesive. Conclusions: This study reports an in situ printing system capable of delivering a hPL-based, transparent bio-adhesive and successfully treating small corneal perforations. The bio-adhesive-treated rabbits recovered faster and required no additional analgesia. Translational Relevance: The developed in situ hPL bio-adhesives treatment represents a new format of treating corneal perforation that is easy to use, allows for accurate application, and can be a potentially effective and pain relief treatment.


Assuntos
Perfuração da Córnea , Adesivos Teciduais , Adesivos , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Perfuração da Córnea/tratamento farmacológico , Cianoacrilatos/uso terapêutico , Adesivo Tecidual de Fibrina/uso terapêutico , Humanos , Dor/tratamento farmacológico , Impressão Tridimensional , Coelhos , Adesivos Teciduais/farmacologia , Adesivos Teciduais/uso terapêutico
8.
Sensors (Basel) ; 11(7): 6603-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163975

RESUMO

The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Sistemas Computacionais/economia , Monitoramento Ambiental/instrumentação , Metano/análise , Tecnologia de Sensoriamento Remoto/instrumentação , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Eliminação de Resíduos , Tecnologia de Sensoriamento Remoto/economia , Tecnologia de Sensoriamento Remoto/métodos
9.
Biomater Sci ; 9(7): 2424-2438, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33428695

RESUMO

3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of methacrylated Ul84 (UlMA) to GelMA solutions. The inclusion of UlMA in the bioinks facilitated the extrusion printing process by reducing yield stress. The resultant printed structures containing ulvan exhibited improved mechanical strength and regulated the rate of scaffold degradation. The 3D printed cell-laden structures with human dermal fibroblasts demonstrated high cell viability, support of cell proliferation and dermal-like properties as evidenced by the deposition of key dermal extracellular matrix components including collagen I, collagen III, elastin and fibronectin. In vitro degradation suggested the role of UlMA in supporting structural stability of the printed cellular structures. Taken together, the present work demonstrates progression towards a biocompatible and biofunctional ink that simultaneously delivers improved mechanical, structural and stability traits that are important in facilitating real world applications in skin tissue repair.


Assuntos
Bioimpressão , Animais , Austrália , Humanos , Polissacarídeos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
10.
Lab Chip ; 21(17): 3338-3351, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231640

RESUMO

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing technique has been employed for the first time to produce microcapillary structures using low cost thermoplastics in a scalable electroosmotic pump application. Capillary structures were formed using a negative space 3D printing approach to deposit longitudinal filament arrangements with polylactic acid (PLA) in either "face-centre cubic" or "body-centre cubic" arrangements, where the voids deliberately formed within the deposited structure act as functional micro-capillaries. These 3D printed capillary structures were shown to be capable of functioning as a simple electroosmotic pump (EOP), where the maximum flow rate of a single capillary EOP was up to 1.0 µl min-1 at electric fields of up to 750 V cm-1. Importantly, higher flow rates were readily achieved by printing parallel multiplexed capillary arrays.


Assuntos
Poliésteres , Impressão Tridimensional
11.
iScience ; 24(12): 103466, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927022

RESUMO

Wearable thermoelectrochemical cells have attracted increasing interest due to their ability to turn human body heat into electricity. Here, we have fabricated a flexible, cost-effective, and 3D porous all-polymer electrode on an electrical conductive polymer substrate via a simple 3D printing method. Owing to the high degree of electrolyte penetration into the 3D porous electrode materials for redox reactions, the all-polymer based porous 3D electrodes deliver an increased power output of more than twice that of the film electrodes under the same mass loading using either n-type or p-type gel electrolytes. To realize the practical application of our thermocell, we fabricated 18 pairs of n-p devices through a series connection of single devices. The strap shaped thermocell arrangement was able to charge up a commercial supercapacitor to 0.27 V using the body heat of the person upon which it was being worn and in turn power a typical commercial lab timer.

12.
J Clin Sleep Med ; 17(2): 315-324, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118930

RESUMO

STUDY OBJECTIVES: To assess the use of a novel magnetic polymer implant in reversing airway collapse and identify potential anatomical targets for airway implant surgery in an in vivo porcine model. METHODS: Target sites of airway collapse were genioglossus muscle, hyoid bone, and middle constrictor muscle. Magnetic polymer implants were sutured to these sites, and external magnetic forces, through magnets with pull forces rated at 102 kg and 294 kg, were applied at the skin. The resultant airway movement was assessed via nasendoscopy. Pharyngeal plexus branches to the middle constrictor muscle were stimulated at 0.5 mA, 1.0 mA, and 2.0 mA and airway movement assessed via nasendoscopy. RESULTS: At the genioglossus muscles, large magnetic forces were required to produce airway movement. At the hyoid bone, anterior movement of the airway was noted when using a 294 kg rated magnet. At the middle constrictor muscle, an anterolateral (or rotatory) pattern of airway movement was noted when using the same magnet. Stimulation of pharyngeal plexus branches to the middle constrictor revealed contraction and increasing rigidity of the lateral walls of the airway as stimulation amplitude increased. The resultant effect was prevention of collapse as opposed to typical airway dilation, a previously unidentified pattern of airway movement. CONCLUSIONS: Surgically implanted smart polymers are an emerging technology showing promise in the treatment of airway collapse in obstructive sleep apnea. Future research should investigate their biomechanical role as an adjunct to treatment of airway collapse through nerve stimulation.


Assuntos
Apneia Obstrutiva do Sono , Polímeros Responsivos a Estímulos , Animais , Humanos , Músculos Faríngeos , Suínos , Tecnologia , Língua
13.
Front Chem ; 9: 662810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113601

RESUMO

The fabrication and electrochemical properties of a 3D printed titanium electrode array are described. The array comprises 25 round cylinders (0.015 cm radius, 0.3 cm high) that are evenly separated on a 0.48 × 0.48 cm square porous base (total geometric area of 1.32 cm2). The electrochemically active surface area consists of fused titanium particles and exhibits a large roughness factor ≈17. In acidic, oxygenated solution, the available potential window is from ~-0.3 to +1.2 V. The voltammetric response of ferrocyanide is quasi-reversible arising from slow heterogeneous electron transfer due to the presence of a native/oxidatively formed oxide. Unlike other metal electrodes, both [Ru(bpy)3]1+ and [Ru(bpy)3]3+ can be created in aqueous solutions which enables electrochemiluminescence to be generated by an annihilation mechanism. Depositing a thin gold layer significantly increases the standard heterogeneous electron transfer rate constant, ko, by a factor of ~80 to a value of 8.0 ± 0.4 × 10-3 cm s-1 and the voltammetry of ferrocyanide becomes reversible. The titanium and gold coated arrays generate electrochemiluminescence using tri-propyl amine as a co-reactant. However, the intensity of the gold-coated array is between 30 (high scan rate) and 100-fold (slow scan rates) higher at the gold coated arrays. Moreover, while the voltammetry of the luminophore is dominated by semi-infinite linear diffusion, the ECL response is significantly influenced by radial diffusion to the individual microcylinders of the array.

14.
Chem Commun (Camb) ; 57(38): 4642-4645, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33876176

RESUMO

Wireless electrochemiluminescence is generated using interdigitated, 3D printed, titanium arrays as feeder electrodes to shape the electric field. Gold microparticles (45 µm diameter), functionalised with 11-mercaptoundecanoic acid, act as micro-emitters to generate electrochemiluminescence from [Ru(bpy)3]2+, (bpy is 2,2'-bipyridine) where the co-reactant is tripropylamine. The oxide coated titanium allows intense electric fields, whose distribution depends on the geometry of the array, to be created in the absence of deliberately added electrolyte. COMSOL modelling and long exposure ECL imaging have been used to map the electric field distribution. Significantly, we demonstrate that by controlling the surface charge of the gold microparticles through the solution pH, the light intensity can be increased by a factor of more than 10.

15.
J Biomed Mater Res A ; 108(6): 1419-1425, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134556

RESUMO

An accurate benchtop model was developed to mimic the different forms of human upper airway collapse in adult sleep apnea patients. This was done via modeling the airway through digital imaging. Airway representative models were then produced in two steps via a customized pneumatic extrusion 3D printing system. This allowed the pressure of collapse and planes of collapse to be manipulated to accurately represent those seen in sleep apnea patients. The pressure flow relationships of the collapsible airways were then studied by inserting the collapsible airways into a module that allowed the chamber pressure (Pc ) around the airways to be increased in order to cause collapse. Airways collapsed at physiologically relevant pressures (5.32-9.58 cmH2 O). Nickel and iron magnetic polymers were then printed into the airway in order to investigate the altering of the airway collapse. The introduction of the nickel and iron magnetic polymers increased the pressure of collapse substantially (7.38-17.51 cmH2 O). Finally, the force produced by the interaction of the magnetic polymer and the magnetic module was studied by measuring a sample of the magnetic airways. The peak force in (48.59-163.34 cN) and the distance over which the forces initially registered (6.8-9.7 mm) were measured using a force transducer. This data set may be used to inform future treatment of sleep apnea, specifically the production of an implantable polymer for surgical intervention.


Assuntos
Síndromes da Apneia do Sono/cirurgia , Adulto , Humanos , Hidrodinâmica , Laringe/anatomia & histologia , Modelos Anatômicos , Nariz/anatomia & histologia , Faringe/anatomia & histologia , Medicina de Precisão , Impressão Tridimensional
16.
Trends Biotechnol ; 38(12): 1316-1328, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32466965

RESUMO

Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.


Assuntos
Bioimpressão , Engenharia Tecidual , Inteligência Artificial , Bioimpressão/tendências , Impressão Tridimensional , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
17.
Data Brief ; 33: 106406, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33088881

RESUMO

Data in this article is associated with our research article "Bipolar Electroactive Conducting Polymers for Wireless Cell Stimulation" [1]. Primarily, the present article shows the data of PPy-pTS, PPy-DS and PPy-DS/collagen in conventional electrochemical process and bipolar electrochemical process for comprehensive supplement and comparison to help with better understanding and developing conducting polymers based bipolar electrochemistry. Secondly, the presented data of bipolar electrostimulation (BPES) protocol development constitute the complete dataset useful for modeling the bipolar electroactive conducting polymers focusing on wireless cell stimulation, which are reported in the main article. All data reported were analysed using Origin 2018b 64Bit.

18.
Biomater Sci ; 7(8): 3497-3509, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290861

RESUMO

An array of biological properties is demonstrated in the category of extracts broadly known as ulvans, including antibacterial, anti-inflammatory and anti-coagulant activities. However, the development of this category in biomedical applications is limited due to high structural variability across species and a lack of consistent and scalable sources. In addition, the modification and formulation of these molecules is still in its infancy with regard to progressing to product development. Here, a sulfated and rhamnose-rich, xylorhamno-uronic acid (XRU) extract from the cell wall of a controlled source of cultivated Australian ulvacean macroalgae resembles mammalian connective glycosaminoglycans. It is therefore a strong candidate for applications in wound healing and tissue regeneration. This study targets the development of polysaccharide modification for fabrication of 3D scaffolds for skin cell (fibroblast) culture. The XRU extract is methacrylated and UV-crosslinked to produce hydrogels with tuneable mechanical properties. The hydrogels demonstrate high cell viability and support cell proliferation over 14 days, which are far more functional than comparable alginate gels. Importantly, an XRU-based bioink is developed for extrusion printing 3D constructs both with and without cell encapsulation. These results highlight the close to product potential of this rhamnose-rich XRU extract as a promising biomaterial toward wound healing. Future studies should be focused on in-depth in vitro characterizations to examine the role of the material in dermal extracellular matrix (ECM) secretion of 3D printed structures, and in vivo characterizations to assess its capacity in supporting wound healing.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hidrogéis/química , Ramnose/química , Sulfatos/química , Ácidos Urônicos/química , Cicatrização/efeitos dos fármacos , Fenômenos Químicos , Humanos , Impressão , Pele/citologia , Água/química
19.
ACS Appl Mater Interfaces ; 11(4): 4353-4363, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30623658

RESUMO

A relative lack of printable materials with tailored functional properties limits the applicability of three-dimensional (3D) printing. In this work, a diamond-acrylonitrile butadiene styrene (ABS) composite filament for use in 3D printing was created through incorporation of high-pressure and high-temperature (HPHT) synthetic microdiamonds as a filler. Homogenously distributed diamond composite filaments, containing either 37.5 or 60 wt % microdiamonds, were formed through preblending the diamond powder with ABS, followed by subsequent multiple fiber extrusions. The thermal conductivity of the ABS base material increased from 0.17 to 0.94 W/(m·K), more than five-fold following incorporation of the microdiamonds. The elastic modulus for the 60 wt % microdiamond containing composite material increased by 41.9% with respect to pure ABS, from 1050 to 1490 MPa. The hydrophilicity also increased by 32%. A low-cost fused deposition modeling printer was customized to handle the highly abrasive composite filament by replacing the conventional (stainless-steel) filament feeding gear with a harder titanium gear. To demonstrate improved thermal performance of 3D printed devices using the new composite filament, a number of composite heat sinks were printed and characterized. Heat dissipation measurements demonstrated that 3D printed heat sinks containing 60 wt % diamond increased the thermal dissipation by 42%.

20.
Adv Healthc Mater ; 8(15): e1900425, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168967

RESUMO

Electricity is important in the physiology and development of human tissues such as embryonic and fetal development, and tissue regeneration for wound healing. Accordingly, electrical stimulation (ES) is increasingly being applied to influence cell behavior and function for a biomimetic approach to in vitro cell culture and tissue engineering. Here, the application of conductive polymer (CP) poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) pillars is described, direct-write printed in an array format, for 3D ES of maturing neural tissues that are derived from human neural stem cells (NSCs). NSCs are initially encapsulated within a conductive polysaccharide-based biogel interfaced with the CP pillar microelectrode arrays (MEAs), followed by differentiation in situ to neurons and supporting neuroglia during stimulation. Electrochemical properties of the pillar electrodes and the biogel support their electrical performance. Remarkably, stimulated constructs are characterized by widespread tracts of high-density mature neurons and enhanced maturation of functional neural networks. Formation of tissues using the 3D MEAs substantiates the platform for advanced clinically relevant neural tissue induction, with the system likely amendable to diverse cell types to create other neural and non-neural tissues. The platform may be useful for both research and translation, including modeling tissue development, function and dysfunction, electroceuticals, drug screening, and regenerative medicine.


Assuntos
Géis/química , Tecido Nervoso/fisiologia , Polímeros/química , Cálcio/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Espectroscopia Dielétrica , Estimulação Elétrica , Humanos , Microeletrodos , Tecido Nervoso/citologia , Células-Tronco Neurais/citologia , Neurogênese , Polissacarídeos/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa