Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(4): e0035923, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017528

RESUMO

Mumps is a highly contagious viral disease that can be prevented by vaccination. In the last decade, we have encountered repeated outbreaks of mumps in highly vaccinated populations, which call into question the effectiveness of available vaccines. Animal models are crucial for understanding virus-host interactions, and viruses such as mumps virus (MuV), whose only natural host is the human, pose a particular challenge. In our study, we examined the interaction between MuV and the guinea pig. Our results present the first evidence that guinea pigs of the Hartley strain can be infected in vivo after intranasal and intratesticular inoculation. We observed a significant viral replication in infected tissues up to 5 days following infection and induction of cellular and humoral immune responses as well as histopathological changes in infected lungs and testicles, without clinical signs of disease. Transmission of the infection through direct contact between animals was not possible. Our results demonstrate that guinea pigs and guinea pig primary cell cultures represent a promising model for immunological and pathogenetic studies of the complex MuV infection. IMPORTANCE Understanding of mumps virus (MuV) pathogenesis and the immune responses against MuV infection is limited. One of the reasons is the lack of relevant animal models. This study explores the interaction between MuV and the guinea pig. We demonstrated that all tested guinea pig tissue homogenates and primary cell cultures are highly susceptible to MuV infection and that α2,3-sialylated glycans (MuV cellular receptors) are being abundantly expressed at their surface. The virus remains in the guinea pig lungs and trachea for up to 4 days following intranasal infection. Although asymptomatic, MuV infection strongly activates both humoral and cellular immune response in infected animals and provides protection against virus challenge. Infection of the lungs and testicles after intranasal and intratesticular inoculation, respectively, is also supported by histopathological changes in these organs. Our findings give perspective for application of guinea pigs in research on MuV pathogenesis, antiviral response, and vaccine development and testing.


Assuntos
Vírus da Caxumba , Caxumba , Animais , Cobaias , Humanos , Caxumba/imunologia , Caxumba/fisiopatologia , Caxumba/virologia , Vírus da Caxumba/metabolismo , Replicação Viral , Células Cultivadas , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Pulmão/virologia , Testículo/virologia
2.
J Fish Dis ; 45(2): 261-276, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34751441

RESUMO

As the most successful crayfish invader and possible vector for infectious agents, signal crayfish Pacifastacus leniusculus is among the major drivers of the native crayfish species decline in Europe. We describe histopathological manifestation and frequency of newly detected idiopathic necrotizing hepatopancreatitis along the invasion range of the signal crayfish in the Korana River in Croatia. Our results show extremely high prevalence of necrotizing hepatopancreatitis (97.3%), with 58.9% of individuals displaying mild and 31.5% moderate histopathological changes in the hepatopancreas, also reflected in the lower hepatosomatic index of analysed animals. Recorded histopathological changes were more frequent in the invasion core where population density is higher. Our preliminary screening of co-occurring native narrow-clawed crayfish Pontastacus leptodactylus showed lower incidence (33.3%) and only mild hepatopancreatic lesions, but potentially highlighted the susceptibility of native crayfish populations to this disease. Pilot analyses of dissolved trace and macro elements in water, sediment fractions and crayfish hepatopancreas do not highlight alarming or unusually high concentrations of analysed elements. Hepatopancreas microbiome analysis, using 16S rRNA gene amplicon sequencing, identified taxonomic groups that should be further investigated, along with impacts of the disease on health and viability of both invasive and native crayfish populations.


Assuntos
Astacoidea , Doenças dos Peixes , Animais , Croácia/epidemiologia , RNA Ribossômico 16S , Alimentos Marinhos
3.
Nanoscale ; 16(19): 9412-9425, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650478

RESUMO

Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.


Assuntos
Cardiotoxicidade , Doxorrubicina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Masculino , Cardiotoxicidade/prevenção & controle , Feminino , Apoptose/efeitos dos fármacos , Nanopartículas/química , Miocárdio/patologia , Miocárdio/metabolismo , Polietilenoglicóis/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Coração/efeitos dos fármacos , Lipossomos/química
4.
EBioMedicine ; 94: 104692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451904

RESUMO

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Envelhecimento , Diferenciação Celular , Síndrome de Down/genética , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa