RESUMO
Aquaculture farming faces challenges to increase production while maintaining welfare of livestock, efficiently use of resources, and being environmentally sustainable. To help overcome these challenges, remote and real-time monitoring of the environmental and biological conditions of the aquaculture site is highly important. Multiple remote monitoring solutions for investigating the growth of seaweed are available, but no integrated solution that monitors different biotic and abiotic factors exists. A new integrated multi-sensing system would reduce the cost and time required to deploy the system and provide useful information on the dynamic forces affecting the plants and the associated biomass of the harvest. In this work, we present the development of a novel miniature low-power NFC-enabled data acquisition system to monitor seaweed growth parameters in an aquaculture context. It logs temperature, light intensity, depth, and motion, and these data can be transmitted or downloaded to enable informed decision making for the seaweed farmers. The device is fully customisable and designed to be attached to seaweed or associated mooring lines. The developed system was characterised in laboratory settings to validate and calibrate the embedded sensors. It performs comparably to commercial environmental sensors, enabling the use of the device to be deployed in commercial and research settings.
Assuntos
Alga Marinha , Agricultura , Aquicultura , Biomassa , Monitorização FisiológicaRESUMO
For the first time, this paper reports a smart museum archive box that features a fully integrated wireless powered temperature and humidity sensor. The smart archive box has been specifically developed for microclimate environmental monitoring of stored museum artifacts in cultural heritage applications. The developed sensor does not require a battery and is wirelessly powered using Near Field Communications (NFC). The proposed solution enables a convenient means for wireless sensing with the operator by simply placing a standard smartphone in close proximity to the cardboard archive box. Wireless sensing capability has the advantage of enabling long-term environmental monitoring of the contents of the archive box without having to move and open the box for reading or battery replacement. This contributes to a sustainable preventive conservation strategy and avoids the risk of exposing the contents to the external environment, which may result in degradation of the stored artifacts. In this work, a low-cost and fully integrated NFC sensor has been successfully developed and demonstrated. The developed sensor is capable of wirelessly measuring temperature and relative humidity with a mean error of 0.37 °C and ±0.35%, respectively. The design has also been optimized for low power operation with a measured peak DC power consumption of 900 µW while yielding a 4.5 cm wireless communication range. The power consumption of the NFC sensor is one of the lowest found in the literature. To the author's knowledge, the NFC sensor proposed in this paper is the first reporting of a smart archive box that is wirelessly powered and uniquely integrated within a cardboard archive box.
Assuntos
Artefatos , Tecnologia sem Fio , Umidade , Museus , TemperaturaRESUMO
Blood pressure (BP) is a vital parameter used by clinicians to diagnose issues in the human cardiovascular system. Cuff-based BP devices are currently the standard method for on-the-spot and ambulatory BP measurements. However, cuff-based devices are not comfortable and are not suitable for long-term BP monitoring. Many studies have reported a significant correlation between pulse transit time (PTT) with blood pressure. However, this relation is impacted by many internal and external factors which might lower the accuracy of the PTT method. In this paper, we present a novel hardware system consisting of two custom photoplethysmography (PPG) sensors designed particularly for the estimation of PTT. In addition, a software interface and algorithms have been implemented to perform a real-time assessment of the PTT and other features of interest from signals gathered between the brachial artery and the thumb. A preclinical study has been conducted to validate the system. Five healthy volunteer subjects were tested and the results were then compared with those gathered using a reference device. The analysis reports a mean difference among subjects equal to -3.75±7.28 ms. Moreover, the standard deviation values obtained for each individual showed comparable results with the reference device, proving to be a valuable tool to investigate the factors impacting the BP-PTT relationship.Clinical Relevance- The proposed system proved to be a feasible solution to detect blood volume changes providing good quality signals to be used in the study of BP-PTT relationship.