Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Pathog ; 12(8): e1005866, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27575840

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1005822.].

2.
PLoS Pathog ; 12(8): e1005822, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505160

RESUMO

Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.


Assuntos
Divisão Celular/fisiologia , Chlamydia trachomatis/fisiologia , Chlamydia trachomatis/ultraestrutura , Polaridade Celular , Células HeLa , Humanos , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão
3.
Cell Microbiol ; 18(3): 305-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26381674

RESUMO

Phosphatidylcholine is a constituent of Chlamydia trachomatis membranes that must be acquired from its mammalian host to support bacterial proliferation. The CLA1 (SR-B1) receptor is a bi-directional phosphatidylcholine/cholesterol transporter that is recruited to the inclusion of Chlamydia-infected cells along with ABCA1. C. trachomatis growth was inhibited in a dose-dependent manner by BLT-1, a selective inhibitor of CLA1 function. Expression of a BLT-1-insensitive CLA1(C384S) mutant ameliorated the effect of the drug on chlamydial growth. CLA1 knockdown using shRNAs corroborated an important role for CLA1 in the growth of C. trachomatis. Trafficking of a fluorescent phosphatidylcholine analogue to Chlamydia was blocked by the inhibition of CLA1 or ABCA1 function, indicating a critical role for these transporters in phosphatidylcholine acquisition by this organism. Our analyses using a dual-labelled fluorescent phosphatidylcholine analogue and mass spectrometry showed that the phosphatidylcholine associated with isolated Chlamydia was unmodified host phosphatidylcholine. These results indicate that C. trachomatis co-opts host phospholipid transporters normally used to assemble lipoproteins to acquire host phosphatidylcholine essential for growth.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Fosfatidilcolinas/metabolismo , Receptores Depuradores Classe B/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/patogenicidade , Ciclopentanos/farmacologia , Células HeLa/efeitos dos fármacos , Células HeLa/microbiologia , Humanos , Receptores Depuradores Classe B/genética , Esfingomielinas/metabolismo , Tiossemicarbazonas/farmacologia
4.
J Biol Chem ; 289(32): 22365-76, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958721

RESUMO

The major phospholipid classes of the obligate intracellular bacterial parasite Chlamydia trachomatis are the same as its eukaryotic host except that they also contain chlamydia-made branched-chain fatty acids in the 2-position. Genomic analysis predicts that C. trachomatis is capable of type II fatty acid synthesis (FASII). AFN-1252 was deployed as a chemical tool to specifically inhibit the enoyl-acyl carrier protein reductase (FabI) of C. trachomatis to determine whether chlamydial FASII is essential for replication within the host. The C. trachomatis FabI (CtFabI) is a homotetramer and exhibited typical FabI kinetics, and its expression complemented an Escherichia coli fabI(Ts) strain. AFN-1252 inhibited CtFabI by binding to the FabI·NADH complex with an IC50 of 0.9 µM at saturating substrate concentration. The x-ray crystal structure of the CtFabI·NADH·AFN-1252 ternary complex revealed the specific interactions between the drug, protein, and cofactor within the substrate binding site. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infectious cycle caused a decrease in infectious titers that correlated with a decrease in branched-chain fatty acid biosynthesis. AFN-1252 treatment at the time of infection prevented the first cell division of C. trachomatis, although the cell morphology suggested differentiation into a metabolically active reticulate body. These results demonstrate that FASII activity is essential for C. trachomatis proliferation within its eukaryotic host and validate CtFabI as a therapeutic target against C. trachomatis.


Assuntos
Chlamydia trachomatis/metabolismo , Ácidos Graxos/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzofuranos/farmacologia , Proliferação de Células/efeitos dos fármacos , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Genes Bacterianos , Células HeLa , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Pironas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Cell Microbiol ; 14(10): 1497-512, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22672264

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that is the most common cause of sexually transmitted bacterial infections and is the etiological agent of trachoma, the leading cause of preventable blindness. The organism infects epithelial cells of the genital tract and eyelid resulting in a damaging inflammatory response. Chlamydia trachomatis grows within a vacuole termed the inclusion, and its growth depends on numerous host factors, including lipids. Although a variety of mechanisms are involved in the acquisition of host cell cholesterol and glycosphingolipids by C. trachomatis, none of the previously documented pathways for lipid acquisition are absolutely required for growth. Here we demonstrate that multiple components of the host high-density lipoprotein (HDL) biogenesis machinery including the lipid effluxers, ABCA1 and CLA 1, and their extracellular lipid acceptor, apoA-1, are recruited to the inclusion of C. trachomatis-infected cells. Furthermore, the apoA-1 that accumulates within the inclusion colocalizes with pools of phosphatidylcholine. Knockdown of ABCA1, which mediates the cellular efflux of cholesterol and phospholipids to initiate the formation of HDL in the serum, prevents the growth of C. trachomatis in infected HeLa cells. In addition, drugs that inhibit the lipid transport activities of ABCA1 and CLA 1 also inhibit the recruitment of phospholipids to the inclusion and prevent chlamydial growth.These results strongly suggest that C. trachomatis co-opts the host cell lipid transport system involved in the formation of HDL to acquire lipids, such as phosphatidylcholine, that are necessary for growth.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Chlamydia trachomatis/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Corpos de Inclusão/enzimologia , Corpos de Inclusão/microbiologia , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Apolipoproteína A-I/metabolismo , Células HeLa , Humanos , Fosfolipídeos/metabolismo , Vacúolos/enzimologia , Vacúolos/microbiologia
6.
Nucleic Acids Res ; 39(5): 1843-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21051342

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that exhibits a unique biphasic developmental cycle that can be disrupted by growth in the presence of IFN-γ and ß-lactams, giving rise to an abnormal growth state termed persistence. Here we have examined the expression of a family of non-coding RNAs (ncRNAs) that are differentially expressed during the developmental cycle and the induction of persistence and reactivation. ncRNAs were initially identified using an intergenic tiling microarray and were confirmed by northern blotting. ncRNAs were mapped, characterized and compared with the previously described chlamydial ncRNAs. The 5'- and 3'-ends of the ncRNAs were determined using an RNA circularization procedure. Promoter predictions indicated that all ncRNAs were expressed from σ(66) promoters and eight ncRNAs contained non-templated 3'-poly-A or poly-AG additions. Expression of ncRNAs was studied by northern blotting during (i) the normal developmental cycle, (ii) IFN-γ-induced persistence and (iii) carbenicillin-induced persistence. Differential temporal expression during the developmental cycle was seen for all ncRNAs and distinct differences in expression were seen during IFN-γ and carbenicillin-induced persistence and reactivation. A heterologous co-expression system was used to demonstrate that one of the identified ncRNAs regulated the expression of FtsI by inducing degradation of ftsI mRNA.


Assuntos
Chlamydia trachomatis/genética , RNA não Traduzido/metabolismo , Carbenicilina/farmacologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interferon gama/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética
7.
Infect Immun ; 79(3): 1044-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199910

RESUMO

We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes.


Assuntos
Infecções por Chlamydia/genética , Chlamydia muridarum/genética , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica/genética , Plasmídeos/genética , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Infecções por Chlamydia/metabolismo , Chlamydia muridarum/metabolismo , Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidade , Cromossomos Bacterianos/genética , Expressão Gênica , Loci Gênicos , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/biossíntese , Glicogênio Sintase/genética , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/genética
8.
Infect Immun ; 79(11): 4425-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21911470

RESUMO

Gamma interferon (IFN-γ) induces expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) in human epithelial cells, the permissive cells for the obligate intracellular bacterium Chlamydia trachomatis. IDO1 depletes tryptophan by catabolizing it to kynurenine with consequences for C. trachomatis, which is a tryptophan auxotroph. In vitro studies reveal that tryptophan depletion can result in the formation of persistent (viable but noncultivable) chlamydial forms. Here, we tested the effects of the IDO1 inhibitor, levo-1-methyl-tryptophan (L-1MT), on IFN-γ-induced C. trachomatis persistence. We found that addition of 0.2 mM L-1MT to IFN-γ-exposed infected HeLa cell cultures restricted IDO1 activity at the mid-stage (20 h postinfection [hpi]) of the chlamydial developmental cycle. This delayed tryptophan depletion until the late stage (38 hpi) of the cycle. Parallel morphological and gene expression studies indicated a consequence of the delay was a block in the induction of C. trachomatis persistence by IFN-γ. Furthermore, L-1MT addition allowed C. trachomatis to undergo secondary differentiation, albeit with limited productive multiplication of the bacterium. IFN-γ-induced persistent infections in epithelial cells have been previously reported to be more resistant to doxycycline than normal productive infections in vitro. Pertinent to this observation, we found that L-1MT significantly improved the efficacy of doxycycline in clearing persistent C. trachomatis forms. It has been postulated that persistent forms of C. trachomatis may contribute to chronic chlamydial disease. Our findings suggest that IDO1 inhibitors such as L-1MT might provide a novel means to investigate, and potentially target, persistent chlamydial forms, particularly in conjunction with conventional therapeutics.


Assuntos
Chlamydia trachomatis/efeitos dos fármacos , Células Epiteliais/microbiologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Interferon gama/farmacologia , Triptofano/análogos & derivados , Antibacterianos/farmacologia , Chlamydia trachomatis/fisiologia , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Fatores de Tempo , Triptofano/análise , Triptofano/farmacologia
9.
J Clin Invest ; 111(11): 1757-69, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12782678

RESUMO

We previously reported that laboratory reference strains of Chlamydia trachomatis differing in infection organotropism correlated with inactivating mutations in the pathogen's tryptophan synthase (trpBA) genes. Here, we have applied functional genomics to extend this work and find that the paradigm established for reference serovars also applies to clinical isolates - specifically, all ocular trachoma isolates tested have inactivating mutations in the synthase, whereas all genital isolates encode a functional enzyme. Moreover, functional enzyme activity was directly correlated to IFN-gamma resistance through an indole rescue mechanism. Hence, a strong selective pressure exists for genital strains to maintain a functional synthase capable of using indole for tryptophan biosynthesis. The fact that ocular serovars (serovar B) isolated from the genital tract were found to possess a functional synthase provided further persuasive evidence of this association. These results argue that there is an important host-parasite relationship between chlamydial genital strains and the human host that determines organotropism of infection and the pathophysiology of disease. We speculate that this relationship involves the production of indole by components of the vaginal microbial flora, allowing chlamydiae to escape IFN-gamma-mediated eradication and thus establish persistent infection.


Assuntos
Chlamydia trachomatis/enzimologia , Olho/microbiologia , Genitália Feminina/microbiologia , Polimorfismo Genético , Triptofano Sintase/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Western Blotting , Diferenciação Celular , Chlamydia trachomatis/genética , Feminino , Células HeLa , Humanos , Indóis/farmacologia , Interferon gama/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
10.
J Infect Dis ; 194(3): 350-7, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16826483

RESUMO

BACKGROUND: Despite small genomic differences, Chlamydia trachomatis biovars exhibit diverse disease manifestations and different growth rates in vivo and in cell culture models. METHODS: Chlamydial inclusion-forming units were enumerated over time in HeLa cells, to evaluate the length of the developmental cycle for C. trachomatis strains A, B, C, and E/Bour (ocular strains) as well as D, E/UW5/Cx, F, and L2 (genital strains). Prototype strains A, D, and L2 were selected for detailed analysis of reticulate body growth, division, and genomic replication. The impact that changing host cells and that coinfection with different strains has on growth was also assessed. RESULTS: The genital strains completed the developmental cycle in 36-44 h, whereas the ocular strains lagged behind considerably. Differences were the result of a longer lag phase (entry plus differentiation) and generation time for the ocular strains. A prototype ocular strain grew faster in conjunctival cells than in cervical cells. Coinfection with genital (D or L2) and ocular strains expedited recovery of the ocular strain. CONCLUSIONS: Precise temporal evaluation of the chlamydial developmental cycle for selected genital and ocular C. trachomatis biovars provides a means for investigating genomic differences that define chlamydial pathotype.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Túnica Conjuntiva/citologia , Túnica Conjuntiva/microbiologia , Citocinese/genética , Citocinese/fisiologia , Replicação do DNA , Células Epiteliais/microbiologia , Feminino , Células HeLa , Humanos , Penicilinas/farmacologia , Tracoma/microbiologia , Cervicite Uterina/microbiologia
11.
FEMS Microbiol Rev ; 29(5): 949-59, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16043254

RESUMO

Intracellular parasitism by bacterial pathogens is a complex, multi-factorial process that has been exploited successfully by a wide variety of organisms. Members of the Order Chlamydiales are obligate intracellular bacteria that are transmitted as metabolically inactive particles and must differentiate, replicate, and re-differentiate within the host cell to carry out their life cycle. Understanding the developmental cycle has been greatly advanced by the availability of complete genome sequences, DNA microarrays, and advanced cell biology techniques. Measuring transcriptional changes throughout the cycle has allowed investigators to determine the nature of the temporal gene expression changes required for bacterial growth and development.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Chlamydia/genética , Chlamydia/metabolismo , Chlamydia/patogenicidade , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
12.
PLoS One ; 11(8): e0158631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537327

RESUMO

Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s) behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Francisella tularensis subsp. holarctica OR960246 (Fth), Francisella tularensis subsp. holarctica LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative pathogenesis of these strains for humans. This strategy could be extended to other closely-related bacterial species for inter-strain and inter-species analyses.


Assuntos
Francisella tularensis/metabolismo , Francisella/metabolismo , Francisella/genética , Francisella/patogenicidade , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Tularemia/microbiologia
13.
Front Microbiol ; 6: 1264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617598

RESUMO

Chlamydia is amongst the rare bacteria that lack the critical cell division protein FtsZ. By annotation, Chlamydia also lacks several other essential cell division proteins including the FtsLBQ complex that links the early (e.g., FtsZ) and late (e.g., FtsI/Pbp3) components of the division machinery. Here, we report chlamydial FtsL and FtsQ homologs. Ct271 aligned well with Escherichia coli FtsL and shared sequence homology with it, including a predicted leucine-zipper like motif. Based on in silico modeling, we show that Ct764 has structural homology to FtsQ in spite of little sequence similarity. Importantly, ct271/ftsL and ct764/ftsQ are present within all sequenced chlamydial genomes and are expressed during the replicative phase of the chlamydial developmental cycle, two key characteristics for a chlamydial cell division gene. GFP-Ct764 localized to the division septum of dividing transformed chlamydiae, and, importantly, over-expression inhibited chlamydial development. Using a bacterial two-hybrid approach, we show that Ct764 interacted with other components of the chlamydial division apparatus. However, Ct764 was not capable of complementing an E. coli FtsQ depletion strain in spite of its ability to interact with many of the same division proteins as E. coli FtsQ, suggesting that chlamydial FtsQ may function differently. We previously proposed that Chlamydia uses MreB and other rod-shape determining proteins as an alternative system for organizing the division site and its apparatus. Chlamydial FtsL and FtsQ homologs expand the number of identified chlamydial cell division proteins and suggest that Chlamydia has likely kept the late components of the division machinery while substituting the Mre system for the early components.

14.
Sci Transl Med ; 7(288): 288ra75, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995221

RESUMO

The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl-substituted 3'-(R)-3'-aminomethyl-3'-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome-binding 3'-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Farmacorresistência Bacteriana , Infecções Respiratórias/tratamento farmacológico , Doenças Bacterianas Sexualmente Transmissíveis/tratamento farmacológico , Espectinomicina/farmacologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/biossíntese , Chlorocebus aethiops , Simulação por Computador , Desenho Assistido por Computador , Modelos Animais de Doenças , Interações Medicamentosas , Estabilidade de Medicamentos , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Doenças Bacterianas Sexualmente Transmissíveis/diagnóstico , Doenças Bacterianas Sexualmente Transmissíveis/microbiologia , Espectinomicina/efeitos adversos , Espectinomicina/análogos & derivados , Espectinomicina/síntese química , Espectinomicina/farmacocinética , Relação Estrutura-Atividade , Células Vero
15.
FEMS Microbiol Lett ; 226(1): 45-9, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-13129606

RESUMO

The Chlamydia trachomatis inclusion is fragile, rendering it incompatible to micromanipulation. We show that the Chlamydia pneumoniae inclusion differs, being resistant to micromanipulation as shown by direct microinjection of the infected host cytosol or the inclusion itself. We have used micromanipulation to clone C. pneumoniae and to free it from mycoplasma contamination.


Assuntos
Chlamydophila pneumoniae/isolamento & purificação , Corpos de Inclusão/microbiologia , Corpos de Inclusão/ultraestrutura , Microinjeções , Micromanipulação , Membrana Celular , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/patogenicidade , Clonagem Molecular , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Células HeLa , Humanos , Mycoplasma/isolamento & purificação , Reação em Cadeia da Polimerase
16.
Artigo em Inglês | MEDLINE | ID: mdl-24918090

RESUMO

The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium's capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C. trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Indóis/metabolismo , Interferon gama/metabolismo , Infecções do Sistema Genital/imunologia , Triptofano/metabolismo , Vagina/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Feminino , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-24959423

RESUMO

In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence.


Assuntos
Colo do Útero/microbiologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/citologia , Chlamydia trachomatis/genética , Infecções do Sistema Genital/microbiologia , Adolescente , Adulto , Carga Bacteriana , Chlamydia trachomatis/isolamento & purificação , Citocinas/análise , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Técnicas Microbiológicas/métodos , Microscopia Eletrônica , Patologia/métodos , Adulto Jovem
18.
PLoS One ; 7(1): e30747, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292031

RESUMO

Loss of the conserved "cryptic" plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/genética , Chlamydia/fisiologia , Chlamydia/patogenicidade , Plasmídeos/genética , Infecções do Sistema Genital/microbiologia , Receptor 2 Toll-Like/fisiologia , Virulência/genética , Animais , Células Cultivadas , Chlamydia/imunologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/patologia , Modelos Animais de Doenças , Evolução Molecular , Feminino , Deleção de Genes , Cobaias , Células HEK293 , Humanos , Ativação Linfocitária/genética , Plasmídeos/fisiologia , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/patologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
20.
J Proteome Res ; 6(9): 3484-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17658781

RESUMO

The protein complement of whole cell extract of the bacterium Francisella tularensis tularensis was analyzed using two-dimensional electrophoresis with preparative isoelectric focusing in the first dimension. The format allows the quantification of relative protein abundance by linear densitometry and extends the potential dynamic range of protein detection by as much as an order of magnitude. The relative abundance and rank order of 136 unique proteins identified in F. tularensis tularensis were established. It is estimated that 16% of the moderately to highly expressed proteins and 8% of all predicted non-pseudogenes were identified by comparing this proteome information with the relative abundance of mRNA as measured by microarray. This rank-ordered proteome list provides an important resource for understanding the pathogenesis of F. tularensis and is a tool for the selection and design of synthetic vaccines. This method represents a useful additional technique to improve whole proteome analyses of simple organisms.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Francisella tularensis/metabolismo , Focalização Isoelétrica/métodos , Análise Serial de Proteínas/métodos , Proteômica/métodos , Proteínas de Bactérias/química , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Focalização Isoelétrica/instrumentação , Proteoma , RNA Mensageiro/metabolismo , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa