Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Gut ; 73(9): 1464-1477, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857990

RESUMO

OBJECTIVE: Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN: We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS: We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS: Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.


Assuntos
Doença de Crohn , Metilação de DNA , Epigênese Genética , Mucosa Intestinal , Organoides , Humanos , Doença de Crohn/genética , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Organoides/metabolismo , Organoides/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Animais , Feminino , Masculino , Camundongos Knockout , Bancos de Espécimes Biológicos , Adulto , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Nucleic Acids Res ; 48(22): e131, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152068

RESUMO

Genome-wide association studies (GWAS) have identified numerous genetic loci underlying human diseases, but a fundamental challenge remains to accurately identify the underlying causal genes and variants. Here, we describe an arrayed CRISPR screening method, Genome engineering-based Interrogation of Enhancers (GenIE), which assesses the effects of defined alleles on transcription or splicing when introduced in their endogenous genomic locations. We use this sensitive assay to validate the activity of transcriptional enhancers and splice regulatory elements in human induced pluripotent stem cells (hiPSCs), and develop a software package (rgenie) to analyse the data. We screen the 99% credible set of Alzheimer's disease (AD) GWAS variants identified at the clusterin (CLU) locus to identify a subset of likely causal variants, and employ GenIE to understand the impact of specific mutations on splicing efficiency. We thus establish GenIE as an efficient tool to rapidly screen for the role of transcribed variants on gene expression.


Assuntos
Doença de Alzheimer/genética , Clusterina/genética , Elementos Facilitadores Genéticos/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Processamento Alternativo/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Sistemas CRISPR-Cas/genética , Edição de Genes , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mutação , Polimorfismo de Nucleotídeo Único/genética
3.
Br J Haematol ; 171(2): 210-214, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085061

RESUMO

Mutations of CSNK1A1, a gene mapping to the commonly deleted region of the 5q- syndrome, have been recently described in patients with del(5q) myelodysplastic syndromes (MDS). Haploinsufficiency of Csnk1a1 in mice has been shown to result in ß-catenin activation and expansion of haematopoietic stem cells (HSC). We have screened a large cohort of 104 del(5q) MDS patients and have identified mutations of CSNK1A1 in five cases (approximately 5%). We have shown up-regulation of ß-catenin target genes in the HSC of patients with del(5q) MDS. Our data further support a central role of CSNK1A1 in the pathogenesis of MDS with del(5q).

5.
Nat Commun ; 13(1): 2885, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610203

RESUMO

Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mielopoese , Diferenciação Celular/genética , Linhagem da Célula/genética , Genômica , Hematopoese/genética , Humanos , Mielopoese/genética
6.
Nat Genet ; 53(3): 392-402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589840

RESUMO

Genome-wide association studies have discovered numerous genomic loci associated with Alzheimer's disease (AD); yet the causal genes and variants are incompletely identified. We performed an updated genome-wide AD meta-analysis, which identified 37 risk loci, including new associations near CCDC6, TSPAN14, NCK2 and SPRED2. Using three SNP-level fine-mapping methods, we identified 21 SNPs with >50% probability each of being causally involved in AD risk and others strongly suggested by functional annotation. We followed this with colocalization analyses across 109 gene expression quantitative trait loci datasets and prioritization of genes by using protein interaction networks and tissue-specific expression. Combining this information into a quantitative score, we found that evidence converged on likely causal genes, including the above four genes, and those at previously discovered AD loci, including BIN1, APH1B, PTK2B, PILRA and CASS4.


Assuntos
Doença de Alzheimer/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Mapeamento Cromossômico , Proteínas do Citoesqueleto/genética , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Microglia/fisiologia , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas , Fatores de Risco , Tetraspaninas/genética
8.
Oncotarget ; 6(42): 44061-71, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26623729

RESUMO

Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Códon sem Sentido , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Repressoras/genética , Animais , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Xenoenxertos , Homozigoto , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Dados de Sequência Molecular , Transplante de Neoplasias , Fenótipo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
9.
Clin Lymphoma Myeloma Leuk ; 12(3): 186-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22381702

RESUMO

UNLABELLED: Thalidomide and lenalidomide, in combination with dexamethasone, provide response rates ranging from 63%-79% after 4 cycles of therapy. Because of toxicities such as neuropathy and myelosuppression for thalidomide and lenalidomide, respectively, dose escalation has not been pursued. We evaluated a syncopated regimen of alternating weeks of thalidomide and lenalidomide to determine if a modified schedule allows for fewer dose reductions and, subsequently, superior efficacy. Although well tolerated, this phase II trial did not show superior efficacy compared with conventional dosing and scheduling of these agents. INTRODUCTION: Over the past decade, the novel agents thalidomide, lenalidomide, and bortezomib have emerged as effective treatment in patients with multiple myeloma (MM). Initially used in the relapse setting, these agents have been incorporated into frontline treatment algorithms. They have been combined in doublets with corticosteroids, in triplets with alkylators, or with each other. Because thalidomide and lenalidomide have different clinical activity and toxicity profiles, we designed a trial to evaluate a syncopated schedule of thalidomide and lenalidomide with weekly dexamethasone in patients with newly diagnosed MM to determine response and toxicity. PATIENTS AND METHODS: Twenty-two patients with newly diagnosed MM were treated with syncopated thalidomide (200 mg on days 1-7 and 15-21), lenalidomide (25 mg on days 8-14 and 22-28 for the first cycle and 50 mg on the same schedule for subsequent cycles) with weekly dexamethasone (40 mg). Each cycle lasted 28 days. MM parameters were assessed at the end of each cycle. It was intended that the patients proceed to stem cell mobilization and autologous transplantation after 4 cycles of therapy. RESULTS: The median number of cycles administered was 3.5. The overall response was 68%. The regimen was well tolerated by the majority of the patients; only patient discontinued treatment because of toxicity. CONCLUSION: We conclude that a syncopated schedule of thalidomide and lenalidomide with weekly dexamethasone was tolerated well, with no unexpected toxicities. However the response rate, even using lenalidomide at 50 mg, was not superior to standard dosing of thalidomide or lenalidomide plus dexamethasone.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Dexametasona/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Talidomida/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Esquema de Medicação , Feminino , Mobilização de Células-Tronco Hematopoéticas , Humanos , Lenalidomida , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa