Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7711): 586-589, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950620

RESUMO

The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U-Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu-176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir1-3. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars4,5. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust 4 , thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U-Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U-Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts4,5, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust6,7.

2.
Anal Chem ; 89(3): 1887-1891, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27936609

RESUMO

The Pb isotope composition of a nuclear fallout debris particle has been directly measured in post-detonation materials produced during the Trinity nuclear test by a secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This technique permits the visual assessment of the spatial distribution of Pb and can be used to obtain full Pb isotope compositions in user-defined regions in a 70 µm × 70 µm analytical window. In conjunction with backscattered electron (BSE) and energy-dispersive spectroscopy (EDS) mapping of the same particle, the Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic sand. Similarly, the Pb isotope composition of the particle is resolvable from the surrounding glass at the 2σ uncertainty level (where σ represents the standard deviation). The Pb isotope composition measured in the particle here is in excellent agreement with that inferred from measurements of green and red trinitite, suggesting that these types of particles are responsible for the Pb isotope compositions measured in both trinitite glasses.

3.
Nature ; 457(7226): 179-82, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19129845

RESUMO

Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

4.
Anal Chem ; 85(15): 7588-93, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23829180

RESUMO

The Pb isotopic compositions for 51 spots of melt glass in 11 samples of trinitite have been determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Trinitite glass yields a large range of Pb isotopic compositions (i.e., (206)Pb/(204)Pb = 17.08-19.04), which reflect mixing between industrial Pb from materials used in the Trinity test and natural geologic components. Areas within trinitite melt glass containing high concentrations of both Cu and Pb, which are derived from the bomb and blast site-related components, were used for delineating the Pb isotopic composition corresponding to the anthropogenic Pb component. Comparison between the isotopic composition estimated here for the industrial Pb used in the Trinity test and those from known Pb deposits worldwide indicates close agreement with ore from the Buchans mine (Newfoundland, Canada). The Buchans mine was active during the time of the Trinity test and was operated by the American Smelting and Refining Company, which could have provided the Pb used in the test. The industrial Pb used in the Trinity test materials is not documented in the literature (or declassified) but could have been present in bricks, solder, pigs, or some other anthropogenic component related to the experiment.

5.
Anal Chem ; 85(8): 4195-8, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23517046

RESUMO

In the event of a rogue nuclear attack or interception of illicit nuclear materials, timely forensic investigations are critical for accurate source attribution. Uranium (U) and plutonium (Pu) isotopic ratios of intercepted materials or postdetonation samples are, perhaps, the most valuable evidence in modern nuclear forensics. These ratios simultaneously provide information regarding the material's ''age'' (i.e., time elapsed since last purification), actinide concentrations, and relevant isotopic ratios/enrichment values. Consequently, these isotope signatures are invaluable in determining the origin, processing history, and intended purpose of any nuclear material. Here we show, for the first time, that it is feasible to determine the U and Pu isotopic compositions of historic nuclear devices from their postdetonation materials utilizing in situ U isotopic measurements. The U isotopic compositions of trinitite glass, produced subsequent to the world's first atomic explosion, indicate two sources: the device's tamper, composed of natural U that underwent fission during detonation, and natural U from the geological background. Enrichments in (234,235,236)U reflect the in situ decay of (238,239,240)Pu, the fuel used in the device. Time-integrated U isotopic modeling yields "supergrade" compositions, where (240)Pu/(239)Pu ≈ 0.01-0.03 and (238)Pu/(239)Pu ≈ 0.00011-0.00017, which are consistent with the Pu originating from the Hanford reactor. Spatially resolved U isotopic data of postdetonation debris reveal important details of the device in a relatively short time frame (hours). This capacity serves as an important deterrent to future nuclear threats and/or terrorist activities and is critical for source attribution and international security.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa