Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(2): 025707, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603864

RESUMO

Over the last two decades, iron oxide based nanoparticles ferrofluids have attracted significant attention for a wide range of applications. For the successful use of these materials in biotechnology and energy, surface coating and specific functionalization is critical to achieve high dispersibility and colloidal stability of the nanoparticles in the ferrofluids. In view of this, the magnetic behavior of clusters of ultra-small MnFe2O4 nanoparticles covered by bovine serum albumin, which is known as a highly biocompatible and environmentally friendly surfactant, is investigated by magnetization measurements, and numerical simulations at an atomic and mesoscopic scale. The coating process with albumin produces a change in the structure, actual size and shape distribution of clusters of exchange coupled particles, giving rise to a distribution of blocking temperatures. The coated system exhibits a superspin glass (SSG) behavior with the SSG freezing temperatures similar to the uncoated ones, providing evidence that the strength of the dipolar interactions is not affected by the presence of the albumin. The DFT calculations show that the albumin coating reduces the surface anisotropy and the saturation magnetization in the nanoparticles leading to lower values of the coercive field in agreement with the experimental findings. Our results clearly demonstrate that the albumin coated clusters of MnFe2O4 particles are ideal systems for energy and biomedical applications since colloidal and thermal stability as well as biosafety is obtained through the albumin coating.

2.
Biomacromolecules ; 13(3): 805-13, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22295868

RESUMO

Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene-vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme-polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Lipase/química , Lipase/metabolismo , Polímeros/química , Polímeros/metabolismo , Compostos de Vinila/química , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Espectroscopia de Ressonância Magnética , Temperatura
3.
J Nanosci Nanotechnol ; 21(5): 2864-2871, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653452

RESUMO

A new mechanical dry process able to develop nanoparticles coated with polymeric material is proposed. An opportunely developed pilot ball milling apparatus permitted to catch-up significant process parameters that are here reported. A proper analysis of the obtained parameters permitted to individuate optimized milling conditions and to prepare a magnetite/albumin core/shell nanocomposite, material with a potential wide spread of applications in biomedical fields. The obtained powder consists in particles having a diameter of about 45 nm and exhibits a high morphological homogeneity. The proposed method is facile, low cost, solvent free and is applicable to the development of a broad range of multifunctional composites for biomedical applications.

4.
ChemSusChem ; 12(22): 4946-4952, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31535779

RESUMO

An innovative one-pot synthetic process that uses water as the only processing solvent was used to obtain ionic liquids (ILs) in a yield of approximately 95 mol % and purity greater than 99.3 wt % (<2 ppm each of lithium, bromide and moisture) in a processing time of 1 h. Since no heating is needed for carrying out the reaction and no purification through sorbents is required, energy, time and chemicals can be saved to minimize waste production. The physicochemical and electrochemical validation, including tests in batteries, reported herein shows that the above-mentioned ILs have properties analogous to those of ILs prepared by standard reported procedures and show high performance without any further purification step through sorbents. These characteristics, in combination with low cost, easy execution and scale-up, sustainability and versatility, make the one-pot process even more appealing, especially for industrial-scale applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25953542

RESUMO

The application of magnetic nanoparticles (MNPs) in medicine is considered much promising especially because they can be handled and directed to specific body sites by external magnetic fields. MNPs have been investigated in magnetic resonance imaging, hyperthermia and drug targeting. In this study, properly functionalized core/shell MNPs with antimicrobial properties were developed to be used for the prevention and treatment of medical device-related infections. Particularly, surface-engineered manganese iron oxide MNPs, produced by a micro-emulsion method, were coated with two different polymers and loaded with usnic acid (UA), a dibenzofuran natural extract possessing antimicrobial activity. Between the two polymer coatings, the one based on an intrinsically antimicrobial cationic polyacrylamide (pAcDED) resulted to be able to provide MNPs with proper magnetic properties and basic groups for UA loading. Thanks to the establishment of acid-base interactions, pAcDED-coated MNPs were able to load and release significant drug amounts resulting in good antimicrobial properties versus Staphylococcus epidermidis (MIC = 0.1 mg/mL). The use of pAcDED having intrinsic antimicrobial activity as MNP coating in combination with UA likely contributed to obtain an enhanced antimicrobial effect. The developed drug-loaded MNPs could be injected in the patient soon after device implantation to prevent biofilm formation, or, later, in presence of signs of infection to treat the biofilm grown on the device surfaces.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Benzofuranos/química , Nanopartículas de Magnetita/química , Magnetismo , Staphylococcus epidermidis/efeitos dos fármacos
6.
Int J Nanomedicine ; 9: 1919-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790434

RESUMO

Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 µg/mL for the MTT assay and 20 µg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Manganês/química , Manganês/toxicidade , Animais , Células 3T3 BALB , Coloides/síntese química , Coloides/toxicidade , Meios de Contraste , Difusão , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Feminino , Dose Letal Mediana , Teste de Materiais , Camundongos , Especificidade de Órgãos , Soluções , Estresse Mecânico , Taxa de Sobrevida , Distribuição Tecidual
7.
Eur J Pharm Sci ; 36(4-5): 555-64, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19136061

RESUMO

Nano-structured polymers delivering an antibiotic for the prevention of medical device-related infections were developed. Systems consisted of bovine serum albumin or polyallylamine nanoparticles alone or entrapped in a polyurethane and then loaded with cefamandole nafate, chosen as a drug model. Results showed that nanoparticles alone were able to adsorb high antibiotic amounts due to their high surface/volume ratio. However, they released cefamandole in an uncontrolled fashion, leading to a rapid loss of antibacterial activity. Improvements in the release control were obtained when CEF loaded and non-loaded nanoparticles were entrapped in a carboxylated polyurethane. For these systems the drug delivery was at least of 50% with respect to nanoparticles alone with a prolonged antimicrobial activity up to 9 days.


Assuntos
Antibacterianos/administração & dosagem , Cefamandol/administração & dosagem , Nanopartículas , Poliaminas/química , Poliuretanos/administração & dosagem , Soroalbumina Bovina/química , Adsorção , Antibacterianos/química , Antibacterianos/farmacologia , Cefamandol/química , Cefamandol/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Poliuretanos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa