Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Bacteriol ; 203(21): e0035921, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34424036

RESUMO

The type 4 secretion system (T4SS) represents a bacterial nanomachine capable of trans-cell wall transportation of proteins and DNA and has attracted intense interest due to its roles in the pathogenesis of infectious diseases. In the current investigation, we uncovered three distinct gene clusters in Clostridioides difficile strain 630 encoding proteins structurally related to components of the VirB4/D4 type 4C secretion system from Streptococcus suis strain 05ZYH33 and located within sequences of conjugative transposons (CTn). Phylogenic analysis revealed that VirB4- and VirD4-like proteins of the CTn4 locus, on the one hand, and those of the CTn2 and CTn5 loci, on the other hand, fit into separate clades, suggesting specific roles of identified secretion system variants in the physiology of C. difficile. Our further study on VirB4- and VirD4-like products encoded by CTn4 revealed that both proteins possess Mg2+-dependent ATPase activity, form oligomers (most likely hexamers) in aqueous solutions, and rely on potassium but not sodium ions for the highest catalytic rate. VirD4 binds nonspecifically to DNA and RNA. The DNA-binding activity of VirD4 strongly decreased with the W241A variant. Mutations in the nucleotide sequences encoding presumable Walker A and Walker B motifs decreased the stability of the oligomers and significantly but not completely attenuated the enzymatic activity of VirB4. In VirD4, substitutions of amino acid residues in the peptides reminiscent of Walker structural motifs neither attenuated the enzymatic activity of the protein nor influenced the oligomerization state of the ATPase. IMPORTANCE C. difficile is a Gram-positive, anaerobic, spore-forming bacterium that causes life-threatening colitis in humans. Major virulence factors of the microorganism include the toxins TcdA, TcdB, and CDT. However, other bacterial products, including a type 4C secretion system, have been hypothesized to contribute to the pathogenesis of the infection and are considered possible virulence factors of C. difficile. In the current paper, we describe the structural organization of putative T4SS machinery in C. difficile and characterize its VirB4- and VirD4-like components. Our studies, in addition to its significance for basic science, can potentially aid the development of antivirulence drugs suitable for the treatment of C. difficile infection.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Clostridioides difficile/genética , Sistemas de Secreção Tipo IV/genética
2.
Protein Expr Purif ; 180: 105810, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33338587

RESUMO

The gene NT01CX_1210 of pathogenic bacterium Clostridium novyi annotated as encoding O-acetylhomoserine sulfhydrylase was cloned and expressed in Escherichia coli. The gene product having O-acetylhomoserine sulfhydrylase activity was purified to homogeneity. The protein showed molecular mass of approximately 184 kDa for the native form and 46 kDa for the subunit. The enzyme catalyzes the γ-substitution reaction of O-acetylhomoserine with maximum activity at pH 7.5. Analysis of C. novyi genome allowed us to suggest that there is only one way for the synthesis of l-methionine in the bacterium. The data obtained may provide the basis for further study of the role of OAHS in Clostridium bacteria and an ascertainment of its mechanism.


Assuntos
Proteínas de Bactérias , Carbono-Oxigênio Liases , Clonagem Molecular , Clostridium/genética , Expressão Gênica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Carbono-Oxigênio Liases/biossíntese , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/isolamento & purificação , Clostridium/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
3.
IUBMB Life ; 71(11): 1815-1823, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31359602

RESUMO

O-acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis. In this study, we report gene cloning, protein purification, and some biochemical characteristics of OAHS from Clostridioides difficile. The enzyme is a tetramer with molecular weight of 185 kDa. It possesses a high activity in the reaction of L-homocysteine synthesis, comparable to reported activities of OAHSes from other sources. OAHS activity is inhibited by metabolic end product L-methionine. L-Propargylglycine was found to be a suicide inhibitor of the enzyme. Substrate analogue Nγ -acetyl-L-2,4-diaminobutyric acid is a competitive inhibitor of OAHS with Ki = 0.04 mM. Analysis of C. difficile genome allows to suggest that the bacterium uses the way of direct sulfhydrylation for the synthesis of L-methionine. The data obtained may provide the basis for further study of the role of OAHS in the pathogenic bacterium and the development of potential inhibitors.


Assuntos
Alcinos/metabolismo , Carbono-Oxigênio Liases/metabolismo , Clonagem Molecular/métodos , Clostridioides difficile/enzimologia , Glicina/análogos & derivados , Metionina/biossíntese , Fosfato de Piridoxal/metabolismo , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Carbono-Oxigênio Liases/genética , Clostridioides difficile/genética , Genoma Bacteriano , Glicina/metabolismo , Homologia de Sequência , Especificidade por Substrato
4.
J Biol Chem ; 292(39): 16014-16023, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28801462

RESUMO

Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslationally modified. Using MS analysis, site-directed mutagenesis, and X-ray structural data analysis of Saccharomyces cerevisiae eEF1A, we identified a posttranslational modification in which the α amino group of mono-l-glutamine is covalently linked to the side chain of glutamate 45 in eEF1A. The MS analysis suggested that all eEF1A molecules are modified by this glutaminylation and that this posttranslational modification occurs at all stages of yeast growth. The mutational studies revealed that this glutaminylation is not essential for the normal functions of eEF1A in S. cerevisiae However, eEF1A glutaminylation slightly reduced growth under antibiotic-induced translational stress conditions. Moreover, we identified the same posttranslational modification in eEF1A from Schizosaccharomyces pombe but not in various other eukaryotic organisms tested despite strict conservation of the Glu45 residue among these organisms. We therefore conclude that eEF1A glutaminylation is a yeast-specific posttranslational modification that appears to influence protein translation.


Assuntos
Glutamina/metabolismo , Modelos Moleculares , Fator 1 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoacilação/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Sequência Conservada , Cristalografia por Raios X , Bases de Dados de Proteínas , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Sequências Hélice-Alça-Hélice , Mutagênese Sítio-Dirigida , Mutação , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Especificidade da Espécie
5.
IUBMB Life ; 69(9): 668-676, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28681503

RESUMO

The exploitation of methionine-depleting enzyme methionine γ-lyase (MGL) is a promising strategy against specific cancer cells that are strongly dependent on methionine. To identify MGL from different sources with high catalytic activity and efficient anticancer action, we have expressed and characterized MGL from Clostridium novyi and compared its catalytic efficiency with the previously studied MGL from Citrobacter freundii. The purified recombinant MGL exhibits kcat and kcat /Km for methionine γ-elimination reaction that are 2.4- and 1.36-fold higher than C. freundii enzyme, respectively, whereas absorption, fluorescence, and circular dichroism spectra are very similar, as expected on the basis of 87% sequence identity and high conservation of active site residues. The reactivity of cysteine residues with DTNB and iodoacetamide was investigated as well as the impact of their chemical modification on catalytic activity. This information is relevant because for increasing bioavailability and reducing immunogenity, MGL should be decorated with polyethylene glycol (PEG). It was found that Cys118 is a faster reacting residue, which results in a significant decrease in the γ-elimination activity. Thus, the protection of Cys118 before conjugation with cysteine-reacting PEG represents a valuable strategy to preserve MGL activity. The anticancer action of C. novyi MGL, evaluated in vitro against prostate (PC-3), chronic myelogenous leucemia (K562), and breast (MDA-MB-231 and MCF7) cancer cells, exhibits IC50 of 1.3 U mL-1 , 4.4 U mL-1 , 1.2 U mL-1 , and 3.4 U mL-1 , respectively. A higher cytotoxicity of C. novyi MGL was found against cancer cells with respect to C. freundii MGL, with the exception of PC-3, where a lower cytotoxicity was observed. © 2017 IUBMB Life, 69(9):668-676, 2017.


Assuntos
Antineoplásicos/farmacologia , Liases de Carbono-Enxofre/genética , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/genética , Antineoplásicos/química , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Clostridium/enzimologia , Clostridium/genética , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
6.
Cell Microbiol ; 17(12): 1752-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26445410

RESUMO

Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.


Assuntos
Toxinas Bacterianas/metabolismo , Células Eucarióticas/fisiologia , Glicosiltransferases/metabolismo , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/patogenicidade , Interações Hospedeiro-Patógeno , Células Eucarióticas/efeitos dos fármacos , Glicosilação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Virulência
7.
Curr Top Microbiol Immunol ; 376: 211-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23900830

RESUMO

Legionella is a gram-negative bacterium and the causative pathogen of legionellosis-a severe pneumonia in humans. A large number of Legionella effectors interfere with numerous host cell functions, including intracellular vacuole trafficking and maturation, phospholipid metabolism, protein ubiquitination, pro-/anti-apoptotic balances or inflammatory responses. Moreover, eukaryotic protein synthesis is affected by L. pneumophila glucosyltransferases Lgt1, Lgt2, and Lgt3. Structurally, these enzymes are similar to large clostridial cytotoxins, use UDP-glucose as a co-substrate and modify a conserved serine residue (Ser-53) in elongation factor 1A (eEF1A). The ternary complex consisting of eEF1A, GTP, and aminoacylated-tRNA seems to be the substrate for Lgts. Studies with Saccharomyces cerevisiae corroborated that eEF1A is the major target responsible for Lgt-induced cytotoxic activity. In addition to Lgt proteins, Legionella produces other effector glycosyltransferase, including the modularly composed protein SetA, which displays tropism for early endosomal compartments, subverts host cell vesicle trafficking and demonstrates toxic activities toward yeast and mammalian cells. Here, our current knowledge about both groups of L. pneumophila glycosylating effectors is reviewed.


Assuntos
Glucosiltransferases/fisiologia , Legionella pneumophila/enzimologia , Legionella pneumophila/patogenicidade , Glucosiltransferases/química , Glicosilação , Humanos , Fator 1 de Elongação de Peptídeos/fisiologia , Especificidade por Substrato
8.
J Biol Chem ; 287(31): 26029-37, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22685293

RESUMO

Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe(54), Tyr(56) and Trp(58), located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor.


Assuntos
Proteínas de Bactérias/fisiologia , Glucosiltransferases/fisiologia , Legionella pneumophila/enzimologia , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Ligação ao GTP/genética , Deleção de Genes , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Glicosilação , Proteínas de Choque Térmico HSP70/genética , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Mutagênese Sítio-Dirigida , Fator 1 de Elongação de Peptídeos/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Fenótipo , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Cell Microbiol ; 14(6): 852-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22288428

RESUMO

Legionella pneumophila is a human pathogen causing severe pneumonia called Legionnaires' disease. Multiple Legionella effectors are type IV-secreted into the host cell to establish a specific vesicular compartment for pathogen replication. Recently, it has been reported that the Legionella effector SetA shares sequence similarity with glycosyltransferases and interferes with vesicular trafficking of host cells. Here we show that SetA possesses glycohydrolase and mono-O-glucosyltransferase activity by using UDP-glucose as a donor substrate. Whereas the catalytic activity is located at the N terminus of SetA, the C terminus (amino acids 401-644) is essential for guidance of SetA to vesicular compartments of host cells. EGFP-SetA expressed in HeLa cells localizes to early endosomes by interacting with phosphatidylinositol 3-phosphate. EGFP-SetA, transiently expressed in RAW 264.7 macrophages, associates with early phagosomes after infection with Escherichia coli and L. pneumophila. Only the combined expression of the C- and N-terminal domains induces growth defects in yeast similar to full-length SetA. The data indicate that SetA is a multidomain protein with an N-terminal glucosyltransferase domain and a C-terminal phosphatidylinositol 3-phosphate-binding domain, which guides the Legionella effector to the surface of the Legionella-containing vacuole. Both, the localization and the glucosyltransferase domains of SetA are crucial for cellular functions.


Assuntos
Proteínas de Bactérias/química , Glucosiltransferases/química , Glicosídeo Hidrolases/química , Legionella pneumophila/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/biossíntese , Domínio Catalítico , Endossomos/metabolismo , Glucose/química , Glucosiltransferases/biossíntese , Glicosídeo Hidrolases/biossíntese , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Hidrólise , Cinética , Legionella pneumophila/fisiologia , Camundongos , Dados de Sequência Molecular , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae , Vacúolos/microbiologia , Proteínas rab5 de Ligação ao GTP/metabolismo
10.
Biomolecules ; 13(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37238644

RESUMO

Legionella is a widespread Gram-negative bacterium occurring in water reservoirs and soils [...].


Assuntos
Legionella , Microbiologia da Água , Bactérias Gram-Negativas , Água
11.
Biomolecules ; 13(6)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371592

RESUMO

In a previous study, we demonstrated that the Clostridioides difficile VirB4-like ATPase forms oligomers in vitro. In the current investigation, to study the observed phenomenon in more detail, we prepared a library of VirB4-derived peptides (delVirB4s) fused to a carrier maltose-binding protein (MBP). Using gel chromatography and polyacrylamide gel electrophoresis, we found a set of overlapping fragments that contribute most significantly to protein aggregation, which were represented as water-soluble oligomers with molecular masses ranging from ~300 kD to several megadaltons. Membrane filtration experiments, sucrose gradient ultracentrifugation, and dynamic light scattering measurements indicated the size of the soluble complex to be 15-100 nm. It was sufficiently stable to withstand treatment with 1 M urea; however, it dissociated in a 6 M urea solution. As shown by the changes in GFP fluorescence and the circular dichroism spectra, the attachment of the delVirB4 peptide significantly altered the structure of the partner MBP. The immunization of mice with the hybrid consisting of the selected VirB4-derived peptide and MBP, GST, or GFP resulted in increased production of specific antibodies compared to the peptide-free carrier proteins, suggesting significant adjuvant activity of the VirB4 fragment. This feature could be useful for the development of new vaccines, especially in the case of "weak" antigens that are unable to elicit a strong immune response by themselves.


Assuntos
Adenosina Trifosfatases , Clostridioides difficile , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Clostridioides difficile/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/metabolismo
12.
Biomolecules ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35204756

RESUMO

Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.


Assuntos
Legionella pneumophila , Proteínas de Bactérias/metabolismo , Glucosiltransferases/genética , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas
13.
Biochimie ; 202: 94-102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988841

RESUMO

Viscumin, a lectin used in anti-cancer therapy, was originally considered as ßGal recognizing protein; later, an ability to bind 6'-sialyl N-acetyllactosamine (6'SLN) terminated gangliosides was found. Here we probed viscumin with a printed glycan array (PGA) containing a large number of mammalian sulfated glycans, and found a strong binding to glycans with 6-O-SuGal moiety as lactose, N-acetyllactosamine (LN), di-N-acetyllactosamine (LacdiNAc), and even 6-O-SuGalNAcα (but not SiaTn). Also, the ability to bind some of αGal terminated glycans, including Galα1-3Galß1-4GlcNAc, was observed. Unexpectedly, only weak interaction was detected with parent neutral ß-galactosides including LN-LN-LN and branched (LN)2LN oligolactosamines; in the light of these data, one should not confidently classify viscumin as a ß-galactoside-binding lectin. Carrying out PGA in the presence of neutral or sulfated/sialylated glycan, together with sequential elution from lactose-sepharose and consideration of the protein structure, lead to the conclusion that two glycan-binding sites of viscumin have different specificities, one of which prefers charged sulfated and sialylated moieties.


Assuntos
Lactose , Animais , Mamíferos , Polissacarídeos , Proteínas Inativadoras de Ribossomos Tipo 2 , Sulfatos
14.
Biochim Biophys Acta ; 1800(2): 134-43, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19647041

RESUMO

Clostridial glucosylating cytotoxins, including Clostridium difficile toxins A and B, Clostridium novyi alpha-toxin, and Clostridium sordellii lethal toxin, are major virulence factors and causative agents of human diseases. These toxins mono-O-glucosylate (or mono-O-GlcNAcylate) a specific threonine residue of Rho/Ras-proteins, which is essential for the function of the molecular switches. Recently, a related group of glucosyltransferases from Legionella pneumophila has been identified. These Legionella glucosyltransferases modify the large GTPase elongation factor eEF1A at a serine residue by mono-O-glucosylation, thereby inhibiting protein synthesis of target cells. Recent results on structures, functions and biological roles of both groups of bacterial toxin glucosyltransferases will be discussed.


Assuntos
Toxinas Bacterianas/química , Glicosiltransferases/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/metabolismo , Humanos , Legionella pneumophila/enzimologia , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/metabolismo , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Proteínas ras/metabolismo
15.
Front Mol Biosci ; 7: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411722

RESUMO

Legionella is a gram-negative microorganism and an infectious agent of pneumonia in humans. It is an intracellular pathogen and multiplies in different eukaryotic cells like amoebae, ciliated protozoa, macrophages, monocytes, and lung epithelial cells. Proliferation of L. pneumophila in eukaryotic cells depends on its type 4 secretion system, which delivers an arsenal of bacterial effector proteins to cytoplasm of its host. Once within the cytoplasm, effectors modify a broad range of host activities, including mRNA translation. Translation is inhibited by Legionella through the action of several effector proteins including Lgt1, Lgt2, Lgt3, SidI, LegK4, SidL, and RavX. Lgt1-3 and SidI target elongation factors: Lgt1-3 mono-glucosylate elongation factor eEF1A, while SidI binds eEF1A, and eEF1Bγ. Effector LegK4 inhibits protein synthesis by phosphorylating Hsp70 proteins, while SidL and RavX have no defined targets in protein synthesis machinery thus far. In addition to direct inhibition of protein synthesis, SidI also affects the stress response, whereas Lgt1-3 - unfolded protein response and cell-cycle progression of host cells. Whether manipulation of these processes is linked to canonical or non-canonical function(s) of targeted elongation factors remains unknown.

16.
Methods Mol Biol ; 1921: 277-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694499

RESUMO

Legionella pneumophila is a facultative intracellular pathogen responsible for legionellosis, a severe lung disease in humans. This bacterium uses a type 4b secretion system to deliver various effector proteins into the cytoplasm of a eukaryotic target cell. Among those is the glucosyltransferase Lgt1. This effector modifies serine-53 in eukaryotic elongation factor 1A (eEF1A) by mono-O-glucosylation. Modification of eEF1A results in inhibition of protein synthesis and death of the eukaryotic cell, processes which are thought to contribute to Legionella infection. Here we describe a protocol for isolation of the glucosyltransferase Lgt1 from L. pneumophila culture followed by assaying its enzymatic activity using 14C-UDP-glucose autoradiography.


Assuntos
Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Legionella pneumophila/enzimologia , Bioensaio , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Glucosiltransferases/química , Glicosilação , Humanos , Biossíntese de Proteínas , Especificidade por Substrato
17.
Naunyn Schmiedebergs Arch Pharmacol ; 392(1): 69-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30225797

RESUMO

Legionella pneumophila glucosyltransferase SetA, which is introduced into target cells by a type IV secretion system, affects the intracellular traffic of host cells. Here, we characterized the enzyme activity of the Legionella effector. We report that Asp118 and Arg121 of SetA are essential for glucohydrolase and glucotransferase activities. Exchange of Trp36 to alanine reduced the enzyme activity of SetA. All three amino acids were crucial for the cytotoxic effects of SetA in yeast. We observed that phosphatidylinositol-3-phosphate (PI3P) increased the glucosyltransferase activity of SetA severalfold, while the glucohydrolase activity was not affected. In the presence of PI3P, we observed the glucosylation of actin, vimentin and the chaperonin CCT5 in the cytosolic fraction of target cells. Studies on the functional consequences of glucosylation of skeletal muscle α-actin in vitro revealed inhibition of actin polymerization by glucosylation.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Legionella pneumophila/enzimologia , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Células CHO , Cricetulus , Escherichia coli/genética , Glucosiltransferases/genética , Humanos , Células Jurkat , Mutagênese Sítio-Dirigida , Fosfatos de Fosfatidilinositol/genética , Saccharomyces cerevisiae/genética
18.
J Bacteriol ; 190(8): 3026-35, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281405

RESUMO

Legionella pneumophila is a facultative intracellular pathogen responsible for severe lung disease in humans, known as legionellosis or Legionnaires' disease. Previously, we reported on the approximately 60-kDa glucosyltransferase (Lgt1) from Legionella pneumophila, which modified eukaryotic elongation factor 1A. In the present study, using L. pneumophila Philadelphia-1, Lens, Paris, and Corby genome databases, we identified several genes coding for proteins with considerable sequence homology to Lgt1. These new enzymes form three subfamilies, termed Lgt1 to -3, glucosylate mammalian elongation factor eEF1A at serine-53, inhibit its activity, and subsequently kill target eukaryotic cells. Expression studies on L. pneumophila grown in broth medium or in Acanthamoeba castellanii revealed that production of Lgt1 was maximal at stationary phase of broth culture or during the late phase of Legionella-host cell interaction, respectively. In contrast, synthesis of Lgt3 peaked during the lag phase of liquid culture and at early steps of bacterium-amoeba interaction. Thus, the data indicate that members of the L. pneumophila glucosyltransferase family are differentially regulated, affect protein synthesis of host cells, and represent potential virulence factors of Legionella.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Legionella pneumophila/enzimologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Fatores de Virulência/metabolismo , Acanthamoeba castellanii/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Bovinos , Linhagem Celular , Sobrevivência Celular , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucosiltransferases/genética , Glicosilação , Legionella pneumophila/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Virulência/genética
19.
Open Microbiol J ; 12: 94-106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785216

RESUMO

BACKGROUND: Staphylococcus aureus is a Gram-positive bacterium that causes severe illnesses in the human population. The capacity of S. aureus strains to form biofilms on biotic and abiotic surfaces creates serious problems for treatment of hospital infections and has stimulated efforts to develop new means of specific protection or immunotherapy. MATERIAL AND METHODS: We found that rabbit serum raised against crude concentrated S. aureus liquid culture significantly decreased the development of staphylococcal biofilm in vitro. To discover the corresponding staphylococcal antigen, we used mass-spectrometry and molecular cloning and identified three major immunodominant proteins. They included α-haemolysin, serine proteinase SplB and S. aureus surface protein G, known as adhesin SasG. RESULTS: Although according to literature data, all these proteins represent virulence factors of S. aureus and play diverse and important roles in the pathogenesis of staphylococcal diseases, only SasG can be directly implicated into the biofilm formation because of its surface location on a staphylococcal cell. Indeed, rabbit serum directed against purified recombinant SasG, similar to serum against crude staphylococcal liquid culture, prevented the formation of a biofilm. CONCLUSION: SasG can be considered as a target in an anti-biofilm drug development and a component of the vaccine or immunotherapeutic preparations directed against staphylococcal infections in humans.

20.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303706

RESUMO

The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5' untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62-K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62-K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62-K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62-K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62-K70 segment of Rps26 and the 5' untranslated region of mRNA. The data suggested a specific role of the Y62-K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62-K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5' untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62-K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa