Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929902

RESUMO

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
2.
Cell ; 168(1-2): 186-199.e12, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041851

RESUMO

Bacteriophages (phages) typically exhibit a narrow host range, yet they tremendously impact horizontal gene transfer (HGT). Here, we investigate phage dynamics in communities harboring phage-resistant (R) and sensitive (S) bacteria, a common scenario in nature. Using Bacillus subtilis and its lytic phage SPP1, we demonstrate that R cells, lacking SPP1 receptor, can be lysed by SPP1 when co-cultured with S cells. This unanticipated lysis was triggered in part by phage lytic enzymes released from nearby infected cells. Strikingly, we discovered that occasionally phages can invade R cells, a phenomenon we termed acquisition of sensitivity (ASEN). We found that ASEN is mediated by R cells transiently gaining phage attachment molecules from neighboring S cells and provide evidence that this molecular exchange is driven by membrane vesicles. Exchange of phage attachment molecules could even occur in an interspecies fashion, enabling phage adsorption to non-host species, providing an unexplored route for HGT. VIDEO ABSTRACT.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , Bacteriólise , Receptores Virais/metabolismo , Bacillus/virologia , Fagos Bacilares/enzimologia , Bacillus subtilis/metabolismo , Especificidade de Hospedeiro , Staphylococcus aureus/virologia , Transdução Genética
3.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37949068

RESUMO

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo
4.
Cell ; 148(1-2): 139-49, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22209493

RESUMO

Upon starvation, the bacterium Bacillus subtilis enters the process of sporulation, lasting several hours and culminating in formation of a spore, the most resilient cell type known. We show that a few days following sporulation, the RNA profile of spores is highly dynamic. In aging spores incubated at high temperatures, RNA content is globally decreased by degradation over several days. This degradation might be a strategy utilized by the spore to facilitate its dormancy. However, spores kept at low temperature exhibit a different RNA profile with evidence supporting transcription. Further, we demonstrate that germination is affected by spore age, incubation temperature, and RNA state, implying that spores can acquire dissimilar characteristics at a time they are considered dormant. We propose that, in contrast to current thinking, entering dormancy lasts a few days, during which spores are affected by the environment and undergo corresponding molecular changes influencing their emergence from quiescence.


Assuntos
Bacillus subtilis/fisiologia , RNA Bacteriano/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , RNA Bacteriano/classificação , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Esporos Bacterianos/fisiologia , Temperatura
5.
EMBO J ; 41(3): e109247, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878184

RESUMO

Appearance of plaques on a bacterial lawn is a sign of successive rounds of bacteriophage infection. Yet, mechanisms evolved by bacteria to limit plaque spread have been hardly explored. Here, we investigated the dynamics of plaque development by lytic phages infecting the bacterium Bacillus subtilis. We report that plaque expansion is followed by a constriction phase owing to bacterial growth into the plaque zone. This phenomenon exposed an adaptive process, herein termed "phage tolerance response", elicited by non-infected bacteria upon sensing infection of their neighbors. The temporary phage tolerance is executed by the stress-response RNA polymerase sigma factor σX (SigX). Artificial expression of SigX prior to phage attack largely eliminates infection. SigX tolerance is primarily conferred by activation of the dlt operon, encoding enzymes that catalyze D-alanylation of cell wall teichoic acid polymers, the major attachment sites for phages infecting Gram-positive bacteria. D-alanylation impedes phage binding and hence infection, thus enabling the uninfected bacteria to form a protective shield opposing phage spread.


Assuntos
Bacillus subtilis/virologia , Bacteriófagos/patogenicidade , Interações Hospedeiro-Patógeno , Bacillus subtilis/metabolismo , Óperon , Fator sigma/metabolismo
6.
Cell ; 144(4): 590-600, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335240

RESUMO

Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.


Assuntos
Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Antibacterianos/metabolismo , Fenômenos Fisiológicos Bacterianos , Citoplasma/metabolismo , Microscopia Eletrônica de Varredura , Nanotubos , Plasmídeos/metabolismo , Staphylococcus aureus/metabolismo
7.
Mol Cell ; 57(4): 695-707, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25661487

RESUMO

The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that translation takes place during the earliest revival event, termed germination, a process hitherto considered to occur without the need for any macromolecule synthesis. Furthermore, we demonstrate that translation is required for execution of germination and relies on the bona fide translational factors RpmE and Tig. Our study sheds light on the spore revival process and on the vital building blocks underlying cellular awakening, thereby paving the way for designing new antimicrobial agents to eradicate spore-forming pathogens.


Assuntos
Bacillus subtilis/fisiologia , Modelos Biológicos , Esporos Bacterianos/fisiologia , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Polaridade Celular , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Proteoma , Esporos Bacterianos/citologia , Esporos Bacterianos/metabolismo , Fatores de Tempo
8.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862756

RESUMO

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estruturas Bacterianas , Flagelos/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(28): 14228-14237, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221751

RESUMO

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/genética , Biossíntese de Proteínas , Proteínas Quinases/genética , Esporos Bacterianos/genética , Arginina/genética , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Fosforilação/genética , Ribossomos/genética , Fator sigma/genética , Esporos Bacterianos/crescimento & desenvolvimento
10.
Nucleic Acids Res ; 47(10): 5141-5154, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916351

RESUMO

Bacillus subtilis diadenylate cyclase DisA converts two ATPs into c-di-AMP, but this activity is suppressed upon interaction with sites of DNA damage. DisA forms a rapid moving focus that pauses upon induction of DNA damage during spore development. We report that DisA pausing, however, was not observed in the absence of the RecO mediator or of the RecA recombinase, suggesting that DisA binds to recombination intermediates formed by RecA in concert with RecO. DisA, which physically interacts with RecA, was found to reduce its ATPase activity without competing for nucleotides or ssDNA. Furthermore, increasing DisA concentrations inhibit RecA-mediated DNA strand exchange, but this inhibition failed to occur when RecA was added prior to DisA, and was independent of RecA-mediated nucleotide hydrolysis or increasing concentrations of c-di-AMP. We propose that DisA may preserve genome integrity by downregulating RecA activities at several steps of the DNA damage tolerance pathway, allowing time for the repair machineries to restore genome stability. DisA might reduce RecA-mediated template switching by binding to a stalled or reversed fork.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Recombinases Rec A/metabolismo , Domínio Catalítico , Dano ao DNA , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fósforo-Oxigênio Liases/genética , Mapeamento de Interação de Proteínas , Recombinação Genética
11.
Mol Microbiol ; 111(6): 1463-1475, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811056

RESUMO

Bacteriophages (phages) are the most abundant entities in nature, yet little is known about their capacity to acquire new hosts and invade new niches. By exploiting the Gram-positive soil bacterium Bacillus subtilis (B. subtilis) and its lytic phage SPO1 as a model, we followed the coevolution of bacteria and phages. After infection, phage-resistant bacteria were readily isolated. These bacteria were defective in production of glycosylated wall teichoic acid (WTA) polymers that served as SPO1 receptor. Subsequently, a SPO1 mutant phage that could infect the resistant bacteria evolved. The emerging phage contained mutations in two genes, encoding the baseplate and fibers required for host attachment. Remarkably, the mutant phage gained the capacity to infect non-host Bacillus species that are not infected by the wild-type phage. We provide evidence that the evolved phage lost its dependency on the species-specific glycosylation pattern of WTA polymers. Instead, the mutant phage gained the capacity to directly adhere to the WTA backbone, conserved among different species, thereby crossing the species barrier.


Assuntos
Bacillus subtilis/virologia , Bacteriófagos/genética , Especificidade de Hospedeiro , Mutação , Proteínas Virais/genética , Proteínas de Transporte/genética , Glicosilação
12.
BMC Biol ; 13: 76, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26381121

RESUMO

BACKGROUND: Bacterial spores can remain dormant for decades, yet harbor the exceptional capacity to rapidly resume metabolic activity and recommence life. Although germinants and their corresponding receptors have been known for more than 30 years, the molecular events underlying this remarkable cellular transition from dormancy to full metabolic activity are only partially defined. RESULTS: Here, we examined whether protein phospho-modifications occur during germination, the first step of exiting dormancy, thereby facilitating spore revival. Utilizing Bacillus subtilis as a model organism, we performed phosphoproteomic analysis to define the Ser/Thr/Tyr phosphoproteome of a reviving spore. The phosphoproteome was found to chiefly comprise newly identified phosphorylation sites located within proteins involved in basic biological functions, such as transcription, translation, carbon metabolism, and spore-specific determinants. Quantitative comparison of dormant and germinating spore phosphoproteomes revealed phosphorylation dynamics, indicating that phospho-modifications could modulate protein activity during this cellular transition. Furthermore, by mutating select phosphorylation sites located within proteins representative of key biological processes, we established a functional connection between phosphorylation and the progression of spore revival. CONCLUSIONS: Herein, we provide, for the first time, a phosphoproteomic view of a germinating bacterial spore. We further show that the spore phosphoproteome is dynamic and present evidence that phosphorylation events play an integral role in facilitating spore revival.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Fosforilação , Esporos Bacterianos/fisiologia
13.
PLoS Pathog ; 8(9): e1002925, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028324

RESUMO

Finding bacterial cellular targets for developing novel antibiotics has become a major challenge in fighting resistant pathogenic bacteria. We present a novel compound, Relacin, designed to inhibit (p)ppGpp production by the ubiquitous bacterial enzyme RelA that triggers the Stringent Response. Relacin inhibits RelA in vitro and reduces (p)ppGpp production in vivo. Moreover, Relacin affects entry into stationary phase in Gram positive bacteria, leading to a dramatic reduction in cell viability. When Relacin is added to sporulating Bacillus subtilis cells, it strongly perturbs spore formation regardless of the time of addition. Spore formation is also impeded in the pathogenic bacterium Bacillus anthracis that causes the acute anthrax disease. Finally, the formation of multicellular biofilms is markedly disrupted by Relacin. Thus, we establish that Relacin, a novel ppGpp analogue, interferes with bacterial long term survival strategies, placing it as an attractive new antibacterial agent.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Dipeptídeos/farmacologia , Guanosina Tetrafosfato/metabolismo , Ligases/antagonistas & inibidores , Bacillus anthracis/metabolismo , Bacillus anthracis/fisiologia , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Biofilmes/efeitos dos fármacos , Desoxiguanosina/química , Desoxiguanosina/farmacologia , Dipeptídeos/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ligases/metabolismo , Testes de Sensibilidade Microbiana , Esporos Bacterianos/efeitos dos fármacos
14.
J Bacteriol ; 195(7): 1475-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335417

RESUMO

Upon nutrient deprivation, Bacillus subtilis initiates the developmental process of sporulation by integrating environmental and extracellular signals. These signals are channeled into a phosphorelay ultimately activating the key transcriptional regulator of sporulation, Spo0A. Subsequently, phosphorylated Spo0A regulates the expression of genes required for sporulation to initiate. Here we identified a group of genes whose transcription levels are controlled by Spo0A during exponential growth. Among them, three upregulated genes, termed sivA, sivB (bslA), and sivC, encode factors found to inhibit Spo0A activation. We furthermore show that the Siv factors operate by reducing the activity of histidine kinases located at the top of the sporulation phosphorelay, thereby decreasing Spo0A phosphorylation. Thus, we demonstrate the existence of modulators, positively controlled by Spo0A, which inhibit inappropriate entry into the costly process of sporulation, when conditions are favorable for exponential growth.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Histidina Quinase , Proteínas Quinases/metabolismo , Transdução de Sinais , Esporos Bacterianos/citologia , Esporos Bacterianos/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
J Bacteriol ; 195(9): 1875-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417486

RESUMO

Bacterial spores can remain dormant for years, yet they possess a remarkable potential to rapidly resume a vegetative life form. Here, we identified a distinct phase at the onset of spore outgrowth, designated the ripening period. This transition phase is exploited by the germinating spore for molecular reorganization toward elongation and subsequent cell division. We have previously shown that spores of different ages, kept under various temperatures, harbor dissimilar molecular reservoirs (E. Segev, Y. Smith, and S. Ben-Yehuda, Cell 148:139-149, 2012). Utilizing this phenomenon, we observed that the length of the ripening period can vary according to the spore molecular content. Importantly, the duration of the ripening period was found to correlate with the initial spore rRNA content and the kinetics of rRNA accumulation upon exiting dormancy. Further, the synthesis of the ribosomal protein RplA and the degradation of the spore-specific protein SspA also correlated with the duration of the ripening period. Our data suggest that the spore molecular cargo determines the extent of the ripening period, a potentially crucial phase for a germinating spore in obtaining limited resources during revival.


Assuntos
Bacillus subtilis/genética , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/química , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cinética , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
16.
EMBO Rep ; 12(6): 594-601, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21566650

RESUMO

The bacterium Bacillus subtilis produces the DNA integrity scanning protein (DisA), a checkpoint protein that delays sporulation in response to DNA damage. DisA scans the chromosome and pauses at sites of DNA lesions. Structural analysis showed that DisA synthesizes the small molecule cyclic diadenosine monophosphate (c-di-AMP). Here, we demonstrate that the intracellular concentration of c-di-AMP rises markedly at the onset of sporulation in a DisA-dependent manner. Furthermore, exposing sporulating cells to DNA-damaging agents leads to a global decrease in the level of this molecule. This drop was associated with stalled DisA complexes that halt c-di-AMP production and with increased levels of the c-di-AMP-degrading enzyme YybT. Reduced c-di-AMP levels cause a delay in sporulation that can be reversed by external supplementation of the molecule. Thus, c-di-AMP acts as a secondary messenger, coupling DNA integrity with progression of sporulation.


Assuntos
Bacillus subtilis/fisiologia , DNA Bacteriano/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Bacteriano/genética , Fosfatos de Dinucleosídeos/farmacologia , Ativação Enzimática/genética , Espaço Intracelular/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia
17.
PLoS Genet ; 6(9): e1001119, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862359

RESUMO

Synchronizing cell growth, division and DNA replication is an essential property of all living cells. Accurate coordination of these cellular events is especially crucial for bacteria, which can grow rapidly and undergo multifork replication. Here we show that the metabolic protein ManA, which is a component of mannose phosphotransferase system, participates in cell wall construction of the rod shaped bacterium Bacillus subtilis. When growing rapidly, cells lacking ManA exhibit aberrant cell wall architecture, polyploidy and abnormal chromosome morphologies. We demonstrate that these cellular defects are derived from the role played by ManA in cell wall formation. Furthermore, we show that ManA is required for maintaining the proper carbohydrate composition of the cell wall, particularly of teichoic acid constituents. This perturbed cell wall synthesis causes asynchrony between cell wall elongation, division and nucleoid segregation.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Cromossomos Bacterianos/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Segregação de Cromossomos , Replicação do DNA , Mutação/genética , Fenótipo
18.
Proc Natl Acad Sci U S A ; 107(25): 11543-8, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534550

RESUMO

To monitor inaccuracy in gene expression in living cells, we designed an experimental system in the bacterium Bacillus subtilis whereby spontaneous errors can be visualized and quantified at a single-cell level. Our strategy was to introduce mutations into a chromosomally encoded gfp allele, such that errors in protein production are reported in real time by the formation of fluorescent GFP molecules. The data reveal that the amount of errors can greatly exceed previous estimates, and that the error rate increases dramatically at lower temperatures and during stationary phase. Furthermore, we demonstrate that when facing an antibiotic threat, an increase in error level is sufficient to allow survival of bacteria carrying a mutated antibiotic-resistance gene. We propose that bacterial gene expression is error prone, frequently yielding protein molecules that differ slightly from the sequence specified by their DNA, thus generating a cellular reservoir of nonidentical protein molecules. This variation may be a key factor in increasing bacterial fitness, expanding the capability of an isogenic population to face environmental challenges.


Assuntos
Bacillus subtilis/genética , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Alelos , Sobrevivência Celular , Cloranfenicol/farmacologia , Códon , DNA/metabolismo , Variação Genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Modelos Biológicos , Mutação , Biossíntese de Proteínas , Reprodutibilidade dos Testes
19.
Microlife ; 3: uqac004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223344

RESUMO

The Gram positive bacterium Bacillus subtilis and its relatives are capable of forming a durable dormant long-lasting spore. Although spores can remain dormant for years, they possess the remarkable capacity to rapidly resume life and convert into actively growing cells. This cellular transition initiates with a most enigmatic irreversible event, termed germination, lasting only for a few minutes. Germination is typified by a morphological conversion that culminates in loss of spore resilient properties. Yet, the molecular events occurring during this brief critical phase are largely unknown. The current widely accepted view considers germination to occur without the need for any macromolecule synthesis; however, accumulating data from our laboratory and others, highlighted here, provide evidence that both transcription and translation occur during germination and are required for its execution. We further underline numerous overlooked studies, conducted mainly during the 1960s-1970s, reinforcing this notion. We propose to revisit the fascinating process of spore germination and redefine it as a pathway involving macromolecule synthesis. We expect our perspective to shed new light on the awakening process of a variety of spore-forming environmental, commensal, and pathogenic bacteria and possibly be applicable to additional organisms displaying a quiescent life form.

20.
iScience ; 25(10): 105242, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274945

RESUMO

Bacterial spores can preserve cellular dormancy for years, but still hold the remarkable ability to revive and recommence life. This cellular awakening begins with a rapid and irreversible event termed germination; however, the metabolic determinants required for its success have been hardly explored. Here, we show that at the onset of the process of sporulation, the metabolic enzyme RocG catabolizes glutamate, facilitating ATP production in the spore progenitor cell, and subsequently influencing the eventual spore ATP reservoir. Mutants displaying low RocG levels generate low ATP-containing spores that exhibit severe germination deficiency. Importantly, this phenotype could be complemented by expressing RocG at a specific window of time during the initiation of sporulation. Thus, we propose that despite its low abundance in dormant spores, ATP energizes spore germination, and its production, fueled by RocG, is coupled with the initial developmental phase of spore formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa