Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1010773, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792908

RESUMO

Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.


Assuntos
Giardia lamblia , Proteínas Ferro-Enxofre , Humanos , Giardia lamblia/genética , Giardia lamblia/metabolismo , Anaerobiose , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Nucleic Acids Res ; 49(12): 7088-7102, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157109

RESUMO

RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase-α, ß, ß'. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the ß or ß' subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Endorribonucleases/fisiologia , RNA Mensageiro/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/genética , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Genes Bacterianos , Homeostase , Mutação , Supressão Genética , Transcrição Gênica , Transcriptoma
3.
Artigo em Inglês | MEDLINE | ID: mdl-33046497

RESUMO

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Assuntos
Antibacterianos , Proteômica , Antibacterianos/farmacologia , Bacillus subtilis , Proteínas de Bactérias/genética , Tetraciclinas
4.
Metab Eng ; 45: 171-179, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29242163

RESUMO

Bacteria are able to prioritize preferred carbon sources from complex mixtures. This is achieved by the regulatory phenomenon of carbon catabolite repression. To allow the simultaneous utilization of multiple carbon sources and to prevent the time-consuming adaptation to each individual nutrient in biotechnological applications, mutants lacking carbon catabolite repression can be used. However, such mutants often exhibit pleiotropic growth defects. We have isolated and characterized mutations that overcome the growth defect of Bacillus subtilis ccpA mutants lacking the major regulator of catabolite repression, in particular their glutamate auxotrophy. Here we show, that distinct mutations affecting the essential DNA topoisomerase I (TopA) cause glutamate prototrophy of the ccpA mutant. These suppressing variants of the TopA enzyme exhibit increased activity resulting in enhanced relaxation of the DNA. Reduced DNA supercoiling results in enhanced expression of the gltAB operon encoding the biosynthetic glutamate synthase. This is achieved by a significant re-organization of the global transcription network accompanied by re-routing of metabolism, which results in inactivation of the glutamate dehydrogenase. Our results provide a link between DNA topology, the global transcriptional network, and glutamate metabolism and suggest that specific topA mutants may be well suited for biotechnological purposes.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Repressão Catabólica/genética , Proteína Receptora de AMP Cíclico/deficiência , DNA Bacteriano , Mutação , Transcrição Gênica/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
5.
Nucleic Acids Res ; 44(7): 3000-12, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27001521

RESUMO

DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , Transcrição Gênica , Bacillus subtilis/enzimologia , DNA/metabolismo , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/química , Escherichia coli/enzimologia , Conformação de Ácido Nucleico , Moldes Genéticos
6.
J Mol Biol ; 436(4): 168440, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218367

RESUMO

Giardia lambliacauses giardiasis, one of the most common human infectious diseases globally. Previous studies from our lab have shown that hsp90 gene ofGiardia is split into two halves, namely hspN and hspC. The independent pre-mRNAs of these split genes join by trans-splicing, producing a full-length Hsp90 (FlHsp90) mRNA. Genetic manipulation of the participating genes is necessary to understand the mechanism and significance of such trans-splicing based expression of Hsp90. In this study, we have performed transfection based exogenous expression of hspN and/or hspC in G. lamblia. We electroporated a plasmid containing the Avi-tagged hspN component of Hsp90 and examined its fate in G. lamblia. We show that the exogenously expressed hspN RNA gets trans-spliced to endogenously expressed hspC RNA, giving rise to a hybrid-FlHsp90. We highlight the importance of cis-elements in this trans-splicing reaction through mutational analysis. The episomal plasmid carrying deletions in the intronic region of hspN, showed inhibition of the trans-splicing reaction.Additionally, exogenous hspC RNA also followed the same fate as of exogenous hspN, while upon co-transfection with episomal hspN, they underwent trans-splicing with each other. Using eGFP as a test protein, we have shown that intronic sequences of hsp90 gene can guide trans-splicing mediated repair of any associated exonic sequences. Our study provides in vivo validation of Hsp90 trans-splicing, showing crucial role of cis-elements and importantly highlights the potential of hsp90 intronic sequences to function as a minimal splicing tool.


Assuntos
Giardia lamblia , Proteínas de Choque Térmico HSP90 , Proteínas de Protozoários , Trans-Splicing , Giardia lamblia/genética , Íntrons/genética , Precursores de RNA/genética , Trans-Splicing/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Protozoários/genética
7.
Front Microbiol ; 12: 587035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897624

RESUMO

Bacillus subtilis develops genetic competence for the uptake of foreign DNA when cells enter stationary phase and a high cell density is reached. These signals are integrated by the competence transcription factor ComK, which is subject to transcriptional, post-transcriptional and post-translational regulation. Many proteins are involved in the development of competence, both to control ComK activity and to mediate DNA uptake. However, for many proteins, the precise function they play in competence development is unknown. In this study, we assessed whether proteins required for genetic transformation play a role in the activation of ComK or rather act downstream of competence gene expression. While these possibilities could be distinguished for most of the tested factors, we assume that two proteins, PNPase and the transcription factor YtrA, are required both for full ComK activity and for the downstream processes of DNA uptake and integration. Further analyses of the role of the transcription factor YtrA for the competence development revealed that the overexpression of the YtrBCDEF ABC transporter in the ytrA mutant causes the loss of genetic competence. Moreover, overexpression of this ABC transporter also affects biofilm formation. Since the ytrGABCDEF operon is naturally induced by cell wall-targeting antibiotics, we tested the cell wall properties upon overexpression of the ABC transporter and observed an increased thickness of the cell wall. The composition and properties of the cell wall are important for competence development and biofilm formation, suggesting that the observed phenotypes are the result of the increased cell wall thickness as an outcome of YtrBCDEF overexpression.

8.
Microorganisms ; 9(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401387

RESUMO

The expression of rRNA is one of the most energetically demanding cellular processes and, as such, it must be stringently controlled. Here, we report that DNA topology, i.e., the level of DNA supercoiling, plays a role in the regulation of Bacillus subtilis σA-dependent rRNA promoters in a growth phase-dependent manner. The more negative DNA supercoiling in exponential phase stimulates transcription from rRNA promoters, and DNA relaxation in stationary phase contributes to cessation of their activity. Novobiocin treatment of B. subtilis cells relaxes DNA and decreases rRNA promoter activity despite an increase in the GTP level, a known positive regulator of B. subtilis rRNA promoters. Comparative analyses of steps during transcription initiation then reveal differences between rRNA promoters and a control promoter, Pveg, whose activity is less affected by changes in supercoiling. Additional data then show that DNA relaxation decreases transcription also from promoters dependent on alternative sigma factors σB, σD, σE, σF, and σH with the exception of σN where the trend is the opposite. To summarize, this study identifies DNA topology as a factor important (i) for the expression of rRNA in B. subtilis in response to nutrient availability in the environment, and (ii) for transcription activities of B. subtilis RNAP holoenzymes containing alternative sigma factors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa