Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 45(18): 5069-5072, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932455

RESUMO

We report on the experimental and numerical observation of polarization modulation instability (PMI) in a nonlinear fiber Kerr resonator. This phenomenon is phased-matched through the relative phase detuning between the intracavity fields associated with the two principal polarization modes of the cavity. Our experimental investigation is based on a 12 m long fiber ring resonator in which a polarization controller is inserted to finely control the level of intracavity birefringence. Depending on the amount of birefringence, the temporal patterns generated via PMI are found to be either stationary or to exhibit a period-doubled dynamics. The experimental results are in good agreement with numerical simulations based on an Ikeda map for the two orthogonally polarized modes. This Letter provides new insights into the control of modulation instability in multimode Kerr resonators.

2.
Opt Lett ; 42(2): 247-250, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081084

RESUMO

We report numerical and experimental demonstrations of flexible group-velocity dispersion regimes in step-index tellurite fibers by fine control of the fiber core diameter. Our simple fiber design allowed us to explore various nonlinear propagation regimes beyond 2 µm, which involved careful control of four-wave mixing processes. Combined with the recent development of 2 µm fiber lasers, we present an easy way to tailor supercontinuum generation and related coherence features in the high-demand 1.5-3.5 µm spectral region.

3.
Opt Lett ; 41(1): 115-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696172

RESUMO

We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

5.
Phys Rev Lett ; 116(18): 183901, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203323

RESUMO

Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

6.
Opt Express ; 23(8): 10103-10, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969052

RESUMO

We report a fiber-optic parametric amplifier with ultra-broad and flat gain band by using a longitudinally tailored optical fiber. The parametric amplifier has been designed from realistic numerical simulations combined with an inverse algorithm to obtain a flat and wide gain band through fiber dispersion management. We experimentally report ~12 THz gain bandwidth on the Stokes side of the pump with a gain ripple as low as 7 dB and a mean gain up to ~60 dB. Experimental results show good agreement with numerical predictions for different pump powers and wavelength detuning.

7.
Nat Commun ; 13(1): 3137, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668094

RESUMO

Light flow in nonlinear media can exhibit quantum hydrodynamical features which are profoundly different from those of classical fluids. Here, we show that a rather extreme regime of quantum hydrodynamics can be accessed by exploring the piston problem (a paradigm in gas dynamics) for light, and its generalization, named after the celebrated mathematician Riemann, where the piston acts on a concomitant abrupt change of photon density. Our experiment reveals regimes featuring optical rarefaction (retracting piston) or shock (pushing piston) wave pairs, and most importantly the transition to a peculiar type of flow, occurring above a precise critical piston velocity, where the light shocks are smoothly interconnected by a large contrast, periodic, fully nonlinear wave. The transition to such extreme hydrodynamic state is generic for superfluids, but to date remained elusive to any other quantum fluid system. Our full-fiber setup used to observe this phenomenon in temporal domain proves to be a versatile alternative to other platforms currently employed to investigate the hydrodynamical properties of quantum fluids of light.

8.
J Biomed Opt ; 19(8): 086021, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25157612

RESUMO

We present an approach for fiber delivery of femtosecond pulses relying on pulse breakup and soliton self-frequency shift in a custom-made solid-core photonic bandgap fiber. In this scheme, the fiber properties themselves ensure that a powerful Fourier-transform-limited pulse is emitted at the fiber output, hence doing away with the need for complex precompensation and enabling tunability of the excitation. We report high-energy soliton excitation for two-photon fluorescence microspectroscopy over a 100-nm range and multimodal nonlinear imaging on biological samples.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Aumento da Imagem/instrumentação , Lasers , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Espectrometria de Fluorescência/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa