Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Br J Cancer ; 127(5): 908-915, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35650277

RESUMO

BACKGROUND: ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers. METHODS: Precise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines. RESULTS: ABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001). CONCLUSIONS: MRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Proteínas de Fusão bcr-abl/genética , Humanos , Imunoglobulinas , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos de Linfócitos T/genética
2.
Br J Cancer ; 123(5): 742-751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32536690

RESUMO

BACKGROUND: While current chemotherapy has increased cure rates for children with acute lymphoblastic leukaemia (ALL), the largest number of relapsing patients are still stratified as medium risk (MR) at diagnosis (50-60%). This highlights an opportunity to develop improved relapse-prediction models for MR patients. We hypothesised that bone marrow from MR patients who eventually relapsed would regrow faster in a patient-derived xenograft (PDX) model after induction chemotherapy than samples from patients in long-term remission. METHODS: Diagnostic bone marrow aspirates from 30 paediatric MR-ALL patients (19 who relapsed, 11 who experienced remission) were inoculated into immune-deficient (NSG) mice and subsequently treated with either control or an induction-type regimen of vincristine, dexamethasone, and L-asparaginase (VXL). Engraftment was monitored by enumeration of the proportion of human CD45+ cells (%huCD45+) in the murine peripheral blood, and events were defined a priori as the time to reach 1% huCD45+, 25% huCD45+ (TT25%) or clinical manifestations of leukaemia (TTL). RESULTS: The TT25% value significantly predicted MR patient relapse. Mutational profiles of PDXs matched their tumours of origin, with a clonal shift towards relapse observed in one set of VXL-treated PDXs. CONCLUSIONS: In conclusion, establishing PDXs at diagnosis and subsequently applying chemotherapy has the potential to improve relapse prediction in paediatric MR-ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adolescente , Animais , Asparaginase/administração & dosagem , Criança , Pré-Escolar , Dexametasona/administração & dosagem , Feminino , Xenoenxertos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Valor Preditivo dos Testes , Recidiva , Vincristina/administração & dosagem
3.
RNA ; 18(6): 1267-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22539524

RESUMO

The VapBC toxin-antitoxin (TA) family is the largest of nine identified TA families. The toxin, VapC, is a metal-dependent ribonuclease that is inhibited by its cognate antitoxin, VapB. Although the VapBCs are the largest TA family, little is known about their biological roles. Here we describe a new general method for the overexpression and purification of toxic VapC proteins and subsequent determination of their RNase sequence-specificity. Functional VapC was isolated by expression of the nontoxic VapBC complex, followed by removal of the labile antitoxin (VapB) using limited trypsin digestion. We have then developed a sensitive and robust method for determining VapC ribonuclease sequence-specificity. This technique employs the use of Pentaprobes as substrates for VapC. These are RNA sequences encoding every combination of five bases. We combine the RNase reaction with MALDI-TOF MS to detect and analyze the cleavage products and thus determine the RNA cut sites. Successful MALDI-TOF MS analysis of RNA fragments is acutely dependent on sample preparation methods. The sequence-specificity of four VapC proteins from two different organisms (VapC(PAE0151) and VapC(PAE2754) from Pyrobaculum aerophilum, and VapC(Rv0065) and VapC(Rv0617) from Mycobacterium tuberculosis) was successfully determined using the described strategy. This rapid and sensitive method can be applied to determine the sequence-specificity of VapC ribonucleases along with other RNA interferases (such as MazF) from a range of organisms.


Assuntos
Proteínas de Bactérias/química , Sondas RNA/química , Ribonucleases/química , Análise de Sequência de RNA/métodos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Mycobacterium tuberculosis/enzimologia , Pyrobaculum/enzimologia , Ribonucleases/biossíntese , Ribonucleases/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato
4.
Blood Cancer J ; 13(1): 139, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679323

RESUMO

The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance, efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples. Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a plausible regulatory mechanism.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos , Algoritmos , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2/genética , Quinase 1 Polo-Like
5.
J Biol Chem ; 284(43): 29462-9, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19706593

RESUMO

alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.


Assuntos
Proteínas Sanguíneas/química , Hemoglobina A/química , Chaperonas Moleculares/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Cristalografia por Raios X , Hemoglobina A/genética , Hemoglobina A/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Prolina/genética , Prolina/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Relação Estrutura-Atividade
6.
Sci Rep ; 9(1): 2484, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792407

RESUMO

Transcriptomes consist of several classes of RNA that have wide-ranging but often poorly described functions and the deregulation of which leads to numerous diseases. Engineering of functionalized RNA-binding proteins (RBPs) could therefore have many applications. Our previous studies suggested that the RanBP2-type Zinc Finger (ZF) domain is a suitable scaffold to investigate the design of single-stranded RBPs. In the present work, we have analyzed the natural sequence specificity of various members of the RanBP2-type ZF family and characterized the interaction with their target RNA. Surprisingly, our data showed that natural RanBP2-type ZFs with different RNA-binding residues exhibit a similar sequence specificity and therefore no simple recognition code can be established. Despite this finding, different discriminative abilities were observed within the family. In addition, in order to target a long RNA sequence and therefore gain in specificity, we generated a 6-ZF array by combining ZFs from the RanBP2-type family but also from different families, in an effort to achieve a wider target sequence repertoire. We showed that this chimeric protein recognizes its target sequence (20 nucleotides), both in vitro and in living cells. Altogether, our results indicate that the use of ZFs in RBP design remains attractive even though engineering of specificity changes is challenging.


Assuntos
Proteínas de Ligação a RNA/genética , Técnica de Seleção de Aptâmeros/métodos , Sequência de Bases , Sítios de Ligação , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Dedos de Zinco
7.
Cell Rep ; 29(6): 1675-1689.e9, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693904

RESUMO

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neurofibromina 1/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Mutação , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recidiva , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
8.
Mol Plant Pathol ; 19(5): 1196-1209, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28817232

RESUMO

The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector-triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc-finger-like structure with a novel interleaved zinc-binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P-mediated recognition. The first zinc-coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid-binding and chromatin-associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non-conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition.


Assuntos
Basidiomycota/metabolismo , Núcleo Celular/metabolismo , Resistência à Doença , Linho/microbiologia , Proteínas Fúngicas/química , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Células Vegetais/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Nicotiana/genética , Zinco/metabolismo
9.
Protein Sci ; 25(9): 1710-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376968

RESUMO

The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila melanogaster , Humanos , Proteínas Nucleares/genética , Domínios Proteicos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
10.
Oncotarget ; 7(37): 58728-42, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27623214

RESUMO

Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfócitos T/fisiologia , Animais , Asparaginase/uso terapêutico , Linhagem Celular Tumoral , Criança , Seleção Clonal Mediada por Antígeno , Células Clonais , Daunorrubicina/uso terapêutico , Dexametasona/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Hospedeiro Imunocomprometido , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/genética , Vincristina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa