RESUMO
Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.
RESUMO
Pressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities. The present study measured residues of trace metals in Mytilus mussel species collected from a range of locations around the world in areas experiencing a gradient of anthropogenic pressures that we classified as low, moderate, or high impact. The data showed no grouping/impact level when sampling sites in all countries were incorporated in the analysis, but there was significant clustering/impact level for most countries. Overall, high-impact areas were characterized by elevated concentrations of zinc, lead, nickel, and arsenic, whereas copper and silver were detected at higher concentrations in medium-impact areas. Finally, whereas most metals were found at lower concentrations in areas classified as low impact, cadmium was typically elevated in these areas. The present study provides a unique snapshot of worldwide levels of coastal metal contamination through the use of Mytilus species, a well-established marine biomonitoring tool. Environ Toxicol Chem 2021;40:3434-3440. © 2021 SETAC.
Assuntos
Metais Pesados , Mytilus , Oligoelementos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Mytilus/metabolismo , Oligoelementos/análise , Poluentes Químicos da Água/análiseRESUMO
Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster "grow-out" experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (microg g(-1)) and burdens (microg of cadmium oyster(-1)) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster(-1) among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r(2)=-0.13; p<0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were demonstrated, which may have been missed if just concentration was determined.