Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Z Med Phys ; 33(3): 267-291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36849295

RESUMO

Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.


Assuntos
Algoritmos , Imagens de Fantasmas , Ultrassonografia/métodos
2.
Sci Adv ; 9(22): eadg8176, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256942

RESUMO

Volumetric ultrasound imaging has the potential for operator-independent acquisition and enhanced field of view. Panoramic acquisition has many applications across ultrasound; spanning musculoskeletal, liver, breast, and pediatric imaging; and image-guided therapy. Challenges in high-resolution human imaging, such as subtle motion and the presence of bone or gas, have limited such acquisition. These issues can be addressed with a large transducer aperture and fast acquisition and processing. Programmable, ultrafast ultrasound scanners with a high channel count provide an unprecedented opportunity to optimize volumetric acquisition. In this work, we implement nonlinear processing and develop distributed beamformation to achieve fast acquisition over a 47-centimeter aperture. As a result, we achieve a 50-micrometer -6-decibel point spread function at 5 megahertz and resolve in-plane targets. A large volume scan of a human limb is completed in a few seconds, and in a 2-millimeter dorsal vein, the image intensity difference between the vessel center and surrounding tissue was ~50 decibels, facilitating three-dimensional reconstruction of the vasculature.


Assuntos
Mama , Fígado , Humanos , Criança , Ultrassonografia/métodos , Fígado/diagnóstico por imagem , Movimento (Física) , Imagem de Difusão por Ressonância Magnética , Imageamento Tridimensional/métodos
3.
Sci Rep ; 12(1): 13386, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927389

RESUMO

Ultrasound imaging is a widely used diagnostic tool but has limitations in the imaging of deep lesions or obese patients where the large depth to aperture size ratio (f-number) reduces image quality. Reducing the f-number can improve image quality, and in this work, we combined three commercial arrays to create a large imaging aperture of 100 mm and 384 elements. To maintain the frame rate given the large number of elements, plane wave imaging was implemented with all three arrays transmitting a coherent wavefront. On wire targets at a depth of 100 mm, the lateral resolution is significantly improved; the lateral resolution was 1.27 mm with one array (1/3 of the aperture) and 0.37 mm with the full aperture. After creating virtual receiving elements to fill the inter-array gaps, an autoregressive filter reduced the grating lobes originating from the inter-array gaps by - 5.2 dB. On a calibrated commercial phantom, the extended field-of-view and improved spatial resolution were verified. The large aperture facilitates aberration correction using a singular value decomposition-based beamformer. Finally, after approval of the Stanford Institutional Review Board, the three-array configuration was applied in imaging the liver of a volunteer, validating the potential for enhanced resolution.


Assuntos
Ultrassonografia , Humanos , Imagens de Fantasmas , Ultrassonografia/métodos
4.
Theranostics ; 12(11): 4949-4964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836805

RESUMO

Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.


Assuntos
Medicina de Precisão , Transdutores , Microbolhas , Imagens de Fantasmas , Ultrassonografia/métodos
5.
Phys Med Biol ; 66(18)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34433145

RESUMO

The rise of ultrafast ultrasound imaging-with plane or diverging waves - paved the way to new applications of ultrasound in biomedical applications. However, propagation through complex layers (typically fat, muscle, and bone) hinder considerably the image quality, especially because of sound speed heterogeneities. In difficult-to-image patients, in the case of the hepatic steatosis for instance, a good image and a reliable sound speed quantification are crucial to provide a powerful non-invasive diagnosis tool. In this work, we proposed to adapt the singular value decomposition (SVD) beamformer method for diverging waves and thus present a novel aberration correction approach for widely used curved arrays. We probed its efficiency experimentally bothin vitroandin vivo. Besides the proposed matrix formalism, we explored the physical meaning of the SVD of ultrafast data. Finally, we demonstrated the ability of the technique to improve the image quality and offer new perspectives particularly in quantitative liver imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Som , Humanos , Imagens de Fantasmas , Ultrassonografia
6.
IEEE Trans Med Imaging ; 39(10): 3100-3112, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32286965

RESUMO

A shift of paradigm is currently underway in biomedical ultrasound thanks to plane or diverging waves coherent compounding for faster imaging. One remaining challenge consists in handling phase and amplitude aberrations induced during the ultrasonic propagation through complex layers. Unlike conventional line-per-line imaging, ultrafast ultrasound provides backscattering information from the whole imaged area for each transmission. Here, we take benefit from this feature and propose an efficient approach to perform fast aberration correction. Our method is based on the Singular Value Decomposition (SVD) of an ultrafast compound matrix containing backscattered data for several plane wave transmissions. First, we explain the physical signification of SVD and associated singular vectors within the ultrafast matrix formalism. We theoretically demonstrate that the separation of spatial and angular variables, rendered by SVD on ultrafast data, provides an elegant and straightforward way to optimize the angular coherence of backscattered data. In heterogeneous media, we demonstrate that the first spatial and angular singular vectors retrieve respectively the non-aberrated image of a region of interest, and the phase and amplitude of its aberration law. Numerical, in vitro and in vivo results prove the efficiency of the image correction, but also the accuracy of the aberrator determination. Based on spatial and angular coherence, we introduce a complete methodology for adaptive beamforming of ultrafast data, performed on successive isoplanatism patches undergoing SVD beamforming. The simplicity of this method paves the way to real-time adaptive ultrafast ultrasound imaging and provides a theoretical framework for future quantitative ultrasound applications.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Ultrassonografia
7.
Phys Med Biol ; 63(21): 215013, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30362461

RESUMO

The non-invasive quantification of human tissue fat fraction using easily scalable and accessible imaging technologies is crucial for the diagnosis of many diseases including liver steatosis. Here, we propose a non-invasive quantification of fat content using a highly accessible ultrasonic imaging technology. Ultrasonic echoes backscattered from human liver tissues are recombined to synthetize echoes of a virtual point-like reflector within the organs. This virtual point-like reflector is an ultrasonic analogue of artificial stars generated by laser beams in the field of astronomy, which are used to estimate the aberrations induced in the propagation medium. Here, the ultrasonic echoes from the point-like reflector provide an estimate of the Green's function relating the ultrasonic array and the reflector location and consequently represent a measurement of the aberrations induced along the ultrasonic beam travel path. Maximizing the spatial coherence of echoes backscattered from this targeted region provides an estimate of the acoustic sound speed while iteratively making the reflector more echogenic. The acoustic sound speed is dependent of the organ fat content, and we derive and cross-validate a theoretical equation relating acoustic sound speed and fat content both in phantom experiments and humans. An ultrasound-based fat fraction was found to be highly correlated with the oil paraffin concentration (R 2 = 0.985) in phantoms and well correlated with the gold standard magnetic resonance imaging proton density fat fraction measurements (R 2 = 0.73) in patients.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Som , Ultrassonografia/métodos , Acústica , Humanos , Fígado/citologia , Fígado/diagnóstico por imagem , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa