Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 51(11): 6146-6155, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28448139

RESUMO

Autotrophic ammonium oxidation in membrane-aerated biofilm reactors (MABRs) can make treatment of ammonium-rich wastewaters more energy-efficient, especially within the context of short-cut ammonium removal. The challenge is to exclusively enrich ammonium-oxidizing bacteria (AOB). To achieve nitritation, strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an understanding of underlying mechanisms. In this study, a nitrifying MABR was operated under intermittent aeration. During eight months of operation, AOB dominated, while NOB were suppressed. On the basis of dissolved oxygen (DO), ammonium, nitrite, and nitrate profiles within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent aeration, considering DO limitation, direct pH effects on enzymatic activities, and indirect pH effects on activity via substrate speciation. The model predicted strong periodic shifts in the spatial gradients of DO, pH, free ammonia, and free nitrous acid, associated with aerated and nonaerated phases. NOB suppression during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to periodic transient pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different intermittent aeration strategies were then evaluated for nitritation success in intermittently aerated MABRs: both aeration intermittency and duration were effective control parameters.


Assuntos
Biofilmes , Reatores Biológicos , Nitritos , Amônia , Bactérias , Modelos Teóricos
2.
Environ Sci Technol ; 51(18): 10572-10584, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28673083

RESUMO

In-sewer transformation of drug biomarkers (excreted parent drugs and metabolites) can be influenced by the presence of biomass in suspended form as well as attached to sewer walls (biofilms). Biofilms are likely the most abundant and biologically active biomass fraction in sewers. In this study, 16 drug biomarkers were selected, including the parent forms and the major human metabolites of mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC). Transformation and sorption of these substances were assessed in targeted batch experiments using laboratory-scale biofilm reactors operated under aerobic and anaerobic conditions. A one-dimensional model was developed to simulate diffusive transport, abiotic and biotic transformation, and partitioning of drug biomarkers. Model calibration to experimental results allowed estimating biotransformation rate constants in sewer biofilms, which were compared to those obtained for suspended biomass. Our results suggest that sewer biofilms can enhance the biotransformation kinetics of most selected compounds. Through scenario simulations, we demonstrated that the estimation of biotransformation rate constants in biofilm can be significantly biased if the boundary layer thickness is not accurately estimated. This study complements our previous investigation on the transformation and sorption of drug biomarkers in the presence of only suspended biomass in untreated sewage. A better understanding of the role of sewer biofilms-also relative to the in-sewer suspended solids-and improved prediction of associated fate processes can result in more accurate estimation of daily drug consumption in urban areas in wastewater-based epidemiological assessments.


Assuntos
Biofilmes , Biomarcadores , Drogas Ilícitas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Humanos , Drogas Ilícitas/análise , Esgotos , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 50(19): 10316-10334, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27479075

RESUMO

Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.


Assuntos
Esgotos , Águas Residuárias , Antibacterianos , Humanos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Xenobióticos
4.
Environ Sci Technol ; 50(24): 13397-13408, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27737550

RESUMO

Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM(ZS). Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.


Assuntos
Teorema de Bayes , Águas Residuárias/química , Biomarcadores , Reatores Biológicos , Drogas Ilícitas , Esgotos/química , Eliminação de Resíduos Líquidos
5.
Environ Sci Technol ; 50(17): 9279-88, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27477857

RESUMO

In biofilm systems for wastewater treatment (e.g., moving bed biofilms reactors-MBBRs) biofilm thickness is typically not under direct control. Nevertheless, biofilm thickness is likely to have a profound effect on the microbial diversity and activity, as a result of diffusion limitation and thus substrate penetration in the biofilm. In this study, we investigated the impact of biofilm thickness on nitrification and on the removal of more than 20 organic micropollutants in laboratory-scale nitrifying MBBRs. We used novel carriers (Z-carriers, AnoxKaldnes) that allowed controlling biofilm thickness at 50, 200, 300, 400, and 500 µm. The impact of biofilm thickness on microbial community was assessed via 16S rRNA gene amplicon sequencing and ammonia monooxygenase (amoA) abundance quantification through quantitative PCR (qPCR). Results from batch experiments and microbial analysis showed that (i) the thickest biofilm (500 µm) presented the highest specific biotransformation rate constants (kbio, L g(-1) d(-1)) for 14 out of 22 micropollutants; (ii) biofilm thickness positively associated with biodiversity, which was suggested as the main factor for the observed enhancement of kbio; (iii) the thinnest biofilm (50 µm) exhibited the highest nitrification rate (gN d(-1) g(-1)), amoA gene abundance and kbio values for some of the most recalcitrant micropollutants (i.e., diclofenac and targeted sulfonamides). Although thin biofilms favored nitrification activity and the removal of some micropollutants, treatment systems based on thicker biofilms should be considered to enhance the elimination of a broad spectrum of micropollutants.


Assuntos
Biofilmes , Reatores Biológicos , Amônia/metabolismo , Bactérias/metabolismo , Biodiversidade , Nitrificação , RNA Ribossômico 16S/genética
6.
Biotechnol Bioeng ; 109(11): 2757-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22565415

RESUMO

Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between approximately 1% and 16% of the total solid carbamazepine and diclofenac concentrations, respectively, is due to sorption-the remainder being non-bioavailable and sequestered. We demonstrate the effectiveness of the model's predictive power over conventional tools in a statistical analysis, performed at four levels of structural complexity. To assess WWTP retrofitting needs to remove xenobiotic trace chemicals, we suggest using mechanistic models, e.g., ASM-X, in regional risk assessments. For preliminary evaluations, we present operating charts that can be used to estimate average xenobiotic removal rates in WWTPs as a function of SRT and the xenobiotics mass loads normalised to design treatment capacity.


Assuntos
Carbamazepina/metabolismo , Diclofenaco/metabolismo , Esgotos/microbiologia , Xenobióticos/metabolismo , Biotransformação , Modelos Biológicos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
7.
Water Sci Technol ; 63(8): 1726-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21866774

RESUMO

In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer/winter sequence. The model prediction in terms of nitrogen removal, solids inventory in the bioreactors and solids retention time as a function of the solids settling behaviour is investigated. It is found that the settler behaviour, simulated by the hyperbolic model, can introduce significant errors into the approximation of the solids retention time and thus solids inventory of the system. We demonstrate that these impacts can potentially cause deterioration of the predictive power of the biokinetic model, evidenced by an evaluation of the system's nitrogen removal efficiency. The convection-dispersion model exhibits superior behaviour, and the use of this type of model thus is highly recommended, especially bearing in mind future challenges, e.g., the explicit representation of uncertainty in WWTP models.


Assuntos
Reatores Biológicos , Simulação por Computador , Modelos Teóricos , Incerteza , Eliminação de Resíduos Líquidos/métodos
8.
Chemosphere ; 262: 127939, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182115

RESUMO

Species specific nitrogen-to-phosphorus molar ratio (NPR) has been suggested for green microalgae. Algae can store nitrogen and phosphorus, suggesting that the optimum feed concentration dynamically changes as function of the nutrient storage. We assessed the effect of varying influent NPR on microalgal cultivation in terms of microbial community stability, effluent quality and biokinetics. Mixed green microalgae (Chlorella sorokiniana and Scenedesmus sp.) and a monoculture of Chlorella sp. were cultivated in continuous laboratory-scale reactors treating used water. An innovative image analysis tool, developed in this study, was used to track microbial community changes. Diatoms proliferated as influent NPR decreased, and were outcompeted once cultivation conditions were restored to the optimal NPR range. Low NPR operation resulted in decrease in phosphorus removal, biomass concentration and effluent nitrogen concentration. ASM-A kinetic model simulation results agreed well with operational data in the absence of diatoms. The failure to predict operational data in the presence of diatoms suggest differences in microbial activity that can significantly influence nutrient recovery in photobioreactors (PBR). No contamination occurred during Chlorella sp. monoculture cultivation with varying NPRs. Low NPR operation resulted in decrease in biomass concentration, effluent nitrogen concentration and nitrogen quota. The ASM-A model was calibrated for the monoculture and the simulations could predict the experimental data in continuous operation using a single parameter subset, suggesting stable biokinetics under the different NPR conditions. Results show that controlling the influent NPR is effective to maintain the algal community composition in PBR, thereby ensuring effective nutrients uptake.


Assuntos
Microalgas/fisiologia , Nitrogênio/análise , Fósforo/análise , Purificação da Água/métodos , Biomassa , Chlorella , Nutrientes , Fotobiorreatores , Scenedesmus , Águas Residuárias , Água
9.
Water Sci Technol ; 60(2): 533-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19633397

RESUMO

We present an investigation on climate change effects on a wastewater treatment system that receive sewage collected in a combined sewer system in Oslo, Norway, during winter operation. Results obtained, by contrasting meteorological data with sewage data, show that wastewater treatment plant (WWTP) influent flow rates are significantly increased during temporary snow melting periods above a critical daily air mean temperature of approx. -1.5 degrees C degree (T(Crit)) identified in the area. In order to assess melting patterns, the number of days above and below T(Crit) was assessed, and the annual number of melting periods was additionally evaluated using meteorological data obtained in the last decade. A striking thing about the daily air temperature pattern is that, despite the progressively warmer winter temperatures in the last decade, an increasing number of days with temperatures below -1.5 degrees C could be observed. The frequency of melting periods is shown to increase in wintertime, and it is identified as an additional climate change related factor in the Oslo region. We demonstrate that these impacts can deteriorate the WWTP operation through progressively increasing the relative frequencies of very high influent flow rate and of the very low influent sewage temperature. Such climate change related effects on sewage treatment processes can be characterised as shock-conditions, i.e. significant changes in a system's boundary conditions, occurring in a relatively short period of time. In the six year period examined, biological nitrogen removal and secondary clarification processes are shown to be significantly affected by the climate factors. A striking thing about using the state-of-the-art mathematical models of wastewater treatment processes in decision support systems is their inability of describing, and thus predicting the effects of such shock-loading events, as they have not been studied so far. Adaptation and optimisation of process models, also for use in design, optimisation as well as in real-time automation and process control schemes, are thus critical to meet the challenges of climatic changes in the future.


Assuntos
Esgotos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Clima , Simulação por Computador , Efeito Estufa , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Noruega , Temperatura , Fatores de Tempo , Eliminação de Resíduos Líquidos/métodos , Movimentos da Água
10.
Sci Total Environ ; 644: 1612-1616, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743873

RESUMO

Temperature is one of the key factors, influencing the transformation kinetics of organic chemicals. In the context of wastewater-based epidemiology, however, temperature differences among sewer catchments and within the same catchment (due to, e.g., seasonal variations) have been neglected to date as a factor influencing the estimation of illicit drug consumption. In this study, we assessed the influence of temperature on the transformation of biomarkers in wastewater and its ensuing implications on the back-calculation of chemical consumption rate in urban catchments using the example of selected illicit drugs. Literature data, obtained in laboratory-scale experiments, on the stability of drug biomarkers in untreated wastewater at trace levels was systematically reviewed, and transformation rates obtained at different temperatures were collected. Arrhenius-based equations were fitted to empirical data and identified to describe the transformation of selected cocaine and morphine biomarkers at applicability temperature range (from 2-9 °C to 30-31 °C), with estimated exponential Arrhenius coefficients between 1.04 and 1.18. These empirically-derived relationships were used to assess the influence of temperature on the transformation of drug biomarkers during in-sewer transport and its effect on the back-calculation of drug consumption rate in hypothetical urban catchment scenario simulations. Up to 4-fold increase in removal efficiency was estimated when wastewater temperature increased from 15 °C to 25 °C. Findings from this study can help reducing the uncertainty intrinsic to wastewater-based epidemiology studies, and will be beneficial in comparing chemical consumption estimates from different catchments worldwide.


Assuntos
Drogas Ilícitas/análise , Temperatura , Águas Residuárias/química , Poluentes Químicos da Água/análise , Drogas Ilícitas/química , Modelos Químicos
11.
Water Res ; 138: 333-345, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635164

RESUMO

The subdivision of biofilm reactor in two or more stages (i.e., reactor staging) represents an option for process optimisation of biological treatment. In our previous work, we showed that the gradient of influent organic substrate availability (induced by the staging) can influence the microbial activity (i.e., denitrification and pharmaceutical biotransformation kinetics) of a denitrifying three-stage Moving Bed Biofilm Reactor (MBBR) system. However, it is unclear whether staging and thus the long-term exposure to varying organic carbon type and loading influences the microbial community structure and diversity. In this study, we investigated biofilm structure and diversity in the three-stage MBBR system (S) compared to a single-stage configuration (U) and their relationship with microbial functions. Results from 16S rRNA amplicon libraries revealed a significantly higher microbial richness in the staged MBBR (at 99% sequence similarity) compared to single-stage MBBR. A more even and diverse microbial community was selected in the last stage of S (S3), likely due to exposure to carbon limitation during continuous-flow operation. A core of OTUs was shared in both systems, consisting of Burkholderiales, Xanthomonadales, Flavobacteriales and Sphingobacteriales, while MBBR staging selected for specific taxa (i.e., Candidate division WS6 and Deinococcales). Results from quantitative PCR (qPCR) showed that S3 exhibited the lowest abundance of 16S rRNA but the highest abundance of atypical nosZ, suggesting a selection of microbes with more diverse N-metabolism (i.e., incomplete denitrifiers) in the stage exposed to the lowest carbon availability. A positive correlation (p < 0.05) was observed between removal rate constants of several pharmaceuticals with abundance of relevant denitrifying genes, but not with biodiversity. Despite the previously suggested positive relationship between microbial diversity and functionality in macrobial and microbial ecosystems, this was not observed in the current study, indicating a need to further investigate structure-function relationships for denitrifying systems.


Assuntos
Reatores Biológicos/microbiologia , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Biofilmes/classificação , Carbono/metabolismo , Desnitrificação , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
12.
Water Res ; 141: 19-31, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753974

RESUMO

Due to their widespread application in consumer products, elemental titanium (e.g., titanium dioxide, TiO2) and silver (Ag), also in nanoparticulate form, are increasingly released from households and industrial facilities to urban wastewater treatment plants (WWTPs). A seven-day sampling campaign was conducted in two full-scale WWTPs in Trondheim (Norway) employing only primary treatment. We assessed the occurrence and elimination of Ti and Ag, and conducted size-based fractionation using sequential filtration of influent samples to separate particulate, colloidal and dissolved fractions. Eight-hour composite influent samples were collected to assess diurnal variations in total Ti and Ag influx. Measured influent Ti concentrations (up to 290 µg L-1) were significantly higher than Ag (<0.15-2.1 µg L-1), being mostly associated with suspended solids (>0.7 µm). Removal efficiencies ≥70% were observed for both elements, requiring for one WWTP to account for the high Ti content (∼2 g L-1) in the flocculant. Nano- and micron-sized Ti particles were observed with scanning transmission electron microscopy (STEM) in influent, effluent and biosolids, while Ag nanoparticles were detected in biosolids only. Diurnal profiles of influent Ti were correlated to flow and pollutant concentration patterns (especially total suspended solids), with peaks during the morning and/or evening and minima at night, indicating household discharges as predominant source. Irregular profiles were exhibited by influent Ag, with periodic concentration spikes suggesting short-term discharges from one or few point sources (e.g., industry). Influent Ti and Ag dynamics were reproduced using a disturbance scenario generator model, and we estimated per capita loads of Ti (42-45 mg cap-1 d-1) and Ag (0.11 mg cap-1 d-1) from households as well as additional Ag load (14-22 g d-1) from point discharge. This is the first study to experimentally and mathematically describe short-term release dynamics and dry-weather sources of emissions of Ti and Ag in municipal WWTPs and receiving environments.


Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Titânio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão e Varredura , Noruega , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
13.
Water Res ; 41(8): 1763-73, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17321565

RESUMO

Factors influencing the determination of optimum reactor configuration for activated sludge denitrification are investigated in this paper. A kinetic optimization method is presented to evaluate optimal pre- and post-denitrification bioreactor stages. Applying the method developed, simulation studies were carried out to investigate the impacts of the ratio of the influent readily biodegradable and slowly biodegradable substrates and the oxygen entering the denitrification zones on the optimal anoxic reactor configuration. In addition, the paper describes the effects of the slowly biodegradable substrate on the denitrification efficiency using external substrate dosing, and it demonstrates kinetic considerations concerning the hydrolysis process. It has been shown that as a function of the biodegradable substrate composition, the stage system design with three optimized reactor compartments can effectively increase reaction rates in the denitrification zones, and can provide flexibility for varying operation conditions.


Assuntos
Reatores Biológicos , Modelos Biológicos , Anaerobiose , Hidrólise , Cinética , Nitratos/metabolismo , Nitritos/metabolismo , Oxigênio/metabolismo , Esgotos , Eliminação de Resíduos Líquidos/métodos
14.
Water Res ; 41(15): 3359-71, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17512029

RESUMO

This paper presents a one-dimensional (1-D) model of the secondary settling tank (SST), and the drive for model development is discussed using steady-state simulation results generated with a 2-D computational fluid dynamics (CFD) model. Concentration profiles measured in a flat-bottom circular (fbSST) that is equipped with suction-lift sludge removal, served for CFD model validation. We investigate the factors that may deteriorate the 1-D simulation performance of clarifier models, which incorporate dispersion both in terms of the effluent sludge concentration and in terms of the sludge blanket height. Furthermore, dispersion-models can account for the effect of clarifier flow conditions on thickening performance. However, correlations, found in the literature, are shown to have limited efficiency under the wide flow boundary conditions examined in this study. Optimisation of the 1-D clarifier model structure is proposed by using an overflow dependent dispersion coefficient and including a feed flow dependent reduction factor in the downward convective velocity term. Results obtained show improved simulation performance in the clarification zone and allow for an efficient flow-dependency formulation of the thickening performance.


Assuntos
Modelos Teóricos , Eliminação de Resíduos Líquidos , Simulação por Computador , Reologia , Esgotos
15.
Sci Rep ; 7(1): 9390, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839237

RESUMO

This study presents a novel statistical approach for identifying sequenced chemical transformation pathways in combination with reaction kinetics models. The proposed method relies on sound uncertainty propagation by considering parameter ranges and associated probability distribution obtained at any given transformation pathway levels as priors for parameter estimation at any subsequent transformation levels. The method was applied to calibrate a model predicting the transformation in untreated wastewater of six biomarkers, excreted following human metabolism of heroin and codeine. The method developed was compared to parameter estimation methods commonly encountered in literature (i.e., estimation of all parameters at the same time and parameter estimation with fix values for upstream parameters) by assessing the model prediction accuracy, parameter identifiability and uncertainty analysis. Results obtained suggest that the method developed has the potential to outperform conventional approaches in terms of prediction accuracy, transformation pathway identification and parameter identifiability. This method can be used in conjunction with optimal experimental designs to effectively identify model structures and parameters. This method can also offer a platform to promote a closer interaction between analytical chemists and modellers to identify models for biochemical transformation pathways, being a prominent example for the emerging field of wastewater-based epidemiology.

16.
Water Res ; 123: 408-419, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28689125

RESUMO

Due to the limited efficiency of conventional biological treatment, innovative solutions are being explored to improve the removal of trace organic chemicals in wastewater. Controlling biomass exposure to growth substrate represents an appealing option for process optimization, as substrate availability likely impacts microbial activity, hence organic trace chemical removal. This study investigated the elimination of pharmaceuticals in pre-denitrifying moving bed biofilm reactors (MBBRs), where biofilm exposure to different organic substrate loading and composition was controlled by reactor staging. A three-stage MBBR and a single-stage reference MBBR (with the same operating volume and filling ratio) were operated under continuous-flow conditions (18 months). Two sets of batch experiments (day 100 and 471) were performed to quantify and compare pharmaceutical removal and denitrification kinetics in the different MBBRs. Experimental results revealed the possible influence of retransformation (e.g., from conjugated metabolites) and enantioselectivity on the removal of selected pharmaceuticals. In the second set of experiments, specific trends in denitrification and biotransformation kinetics were observed, with highest and lowest rates/rate constants in the first (S1) and the last (S3) staged sub-reactors, respectively. These observations were confirmed by removal efficiency data obtained during continuous-flow operation, with limited removal (<10%) of recalcitrant pharmaceuticals and highest removal in S1 within the three-stage MBBR. Notably, biotransformation rate constants obtained for non-recalcitrant pharmaceuticals correlated with mean specific denitrification rates, maximum specific growth rates and observed growth yield values. Overall, these findings suggest that: (i) the long-term exposure to tiered substrate accessibility in the three-stage configuration shaped the denitrification and biotransformation capacity of biofilms, with significant reduction under substrate limitation; (ii) biotransformation of pharmaceuticals may have occurred as a result of cometabolism by heterotrophic denitrifying bacteria.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Biofilmes , Desnitrificação , Águas Residuárias
17.
Water Res ; 123: 388-400, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686941

RESUMO

Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 µm) using targeted batch experiments (initial concentration = 1 µg L-1, for X-ray contrast media 15 µg L-1) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient Kd,eq (L g-1). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient Kd,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). Kd,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between Kd,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that diffusion in thin biofilms may be strongly limited (f â‰ª 0.1) by the high biomass density (reduced porosity).


Assuntos
Biofilmes , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Reatores Biológicos , Cinética , Águas Residuárias
18.
Water Res ; 121: 270-279, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554112

RESUMO

Human biomonitoring, i.e. the determination of chemicals and/or their metabolites in human specimens, is the most common and potent tool for assessing human exposure to pesticides, but it suffers from limitations such as high costs and biases in sampling. Wastewater-based epidemiology (WBE) is an innovative approach based on the chemical analysis of specific human metabolic excretion products (biomarkers) in wastewater, and provides objective and real-time information on xenobiotics directly or indirectly ingested by a population. This study applied the WBE approach for the first time to evaluate human exposure to pesticides in eight cities across Europe. 24 h-composite wastewater samples were collected from the main wastewater treatment plants and analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates and pyrethroids, by liquid chromatography-tandem mass spectrometry. The mass loads (mg/day/1000 inhabitants) were highest for organophosphates and lowest for triazines. Different patterns were observed among the cities and for the various classes of pesticides. Population weighted loads of specific biomarkers indicated higher exposure in Castellon, Milan, Copenhagen and Bristol for pyrethroids, and in Castellon, Bristol and Zurich for organophosphates. The lowest mass loads (mg/day/1000 inhabitants) were found in Utrecht and Oslo. These results were in agreement with several national statistics related to pesticides exposure such as pesticides sales. The daily intake of pyrethroids was estimated in each city and it was found to exceed the acceptable daily intake (ADI) only in one city (Castellon, Spain). This was the first large-scale application of WBE to monitor population exposure to pesticides. The results indicated that WBE can give new information about the "average exposure" of the population to pesticides, and is a useful complementary biomonitoring tool to study population-wide exposure to pesticides.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Praguicidas , Águas Residuárias , Cidades , Europa (Continente) , Humanos , Espanha
19.
Water Res ; 88: 538-549, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26540509

RESUMO

Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as TRENS is to be better characterized. Our study provides valuable feedback to the TRENS developers and identifies the importance of system expansion to include impacts outside the immediate nutrient recovery system itself. The study also show for the first time the successful evaluation of urban-to-agricultural water systems in EASETECH.


Assuntos
Técnicas de Apoio para a Decisão , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Conservação dos Recursos Naturais , Dinamarca , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água/instrumentação
20.
Water Res ; 104: 320-329, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27570133

RESUMO

The new paradigm for used water treatment suggests the use of short solid retention times (SRT) to minimize organic substrate mineralization and to maximize resource recovery. However, little is known about the microbes and the underlying biogeochemical mechanisms driving these short-SRT systems. In this paper, we report the start-up and operation of a short-SRT enhanced biological phosphorus removal (EBPR) system operated as a sequencing batch reactor (SBR) fed with preclarified municipal wastewater, which is supplemented with propionate. The microbial community was analysed via 16S rRNA amplicon sequencing. During start-up (SRT = 8 d), the EBPR was removing up to 99% of the influent phosphate and completely oxidized the incoming ammonia. Furthermore, the sludge showed excellent settling properties. However, once the SRT was shifted to 3.5 days nitrification was inhibited and bacteria of the Thiothrix taxon proliferated in the reactor, thereby leading to filamentous bulking (sludge volume index up to SVI = 1100 mL/g). Phosphorus removal deteriorated during this period, likely due to the out-competition of polyphosphate accumulating organisms (PAO) by sulphate reducing bacteria (SRB). Subsequently, SRB activity was suppressed by reducing the anaerobic SRT from 1.2 day to 0.68 day, with a consequent rapid SVI decrease to ∼200 ml/g. The short-SRT EBPR effectively removed phosphate and nitrification was mitigated at SRT = 3 days and oxygen levels ranging from 2 to 3 mg/L.


Assuntos
Fósforo , Esgotos/química , Fenômenos Bioquímicos , Reatores Biológicos/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa