Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 2(4): 263-275, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23494160

RESUMO

The PediVAS blood pump is a magnetically levitated centrifugal pump designed for pediatric bridge-to-decision or bridge-to-recovery in pediatric patients from 3-20kg in weight. In preparation for submission of an investigational device exemption (IDE) application, we completed a final six-animal series of pre-clinical studies. The studies were conducted under controlled conditions as prescribed by the recently released FDA guidance document for animal studies for cardiovascular devices. Three 30-day chronic left ventricular support studies were completed in a juvenile lamb model to demonstrate the safety and hemocompatibility of the PediVAS pump. Three additional 8-hour acute biventricular support studies were performed to demonstrate the feasibility of this approach from a hemodynamic and systems standpoint. It is estimated that 50% of pediatric patients who require left ventricular support also require right ventricular support. All studies were successfully completed without complications, device malfunctions, or adverse events. End-organ function was normal for the chronic studies. We noted small surface lesions on one kidney from each chronic study as well as the presence of ring thrombus on connectors, as expected for these types of studies in animal models. The strategy and challenges imposed by performing a controlled cardiovascular device study in a juvenile lamb model are discussed. We believe that these successful implants demonstrate safety and performance for the PediVAS device for support of an IDE application to initiate human clinical trials and provide a roadmap for other researchers.

2.
Cardiovasc Eng Technol ; 2(4): 253-262, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22211150

RESUMO

Ventricular assist devices (VADs) have significantly impacted the treatment of adult cardiac failure, but few options exist for pediatric patients. This has motivated our group to develop an implantable magnetically levitated rotodynamic VAD (PediaFlow®) for 3-20 kg patients. The second prototype design of the PediaFlow (PF2) is 56% smaller than earlier prototypes, and achieves 0.5-1.5 L/min blood flow rates. In vitro hemodynamic performance and hemolysis testing were performed with analog blood and whole ovine blood, respectively. In vivo evaluation was performed in an ovine model to evaluate hemocompatibility and end-organ function. The in vitro normalized index of hemolysis was 0.05-0.14 g/L over the specified operating range. In vivo performance was satisfactory for two of the three implanted animals. A mechanical defect caused early termination at 17 days of the first in vivo study, but two subsequent implants proceeded without complication and electively terminated at 30 and 70 days. Serum chemistries and plasma free hemoglobin were within normal limits. Gross necropsy revealed small, subclinical infarctions in the kidneys of the 30 and 70 day animals (confirmed by histopathology). The results of these experiments, particularly the biocompatibility demonstrated in vivo encourage further development of a miniature magnetically levitated VAD for the pediatric population. Ongoing work including further reduction of size will lead to a design freeze in preparation for of clinical trials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa