Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JPEN J Parenter Enteral Nutr ; 46(2): 454-461, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33760268

RESUMO

BACKGROUND: Increased intestinal permeability (IP) is associated with sepsis in the intensive care unit (ICU). This study aimed to pilot a sensitive multisugar test to measure IP in the nonfasted state. METHODS: Critically ill, mechanically ventilated adults were recruited from 2 ICUs in Australia. Measurements were completed within 3 days of admission using a multisugar test measuring gastroduodenal (sucrose recovery), small-bowel (lactulose-rhamnose [L-R] and lactulose-mannitol [L-M] ratios), and whole-gut permeability (sucralose-erythritol ratio) in 24-hour urine samples. Urinary sugar concentrations were compared at baseline and after sugar ingestion, and IP sugar recoveries and ratios were explored in relation to known confounders, including renal function. RESULTS: Twenty-one critically ill patients (12 males; median, 57 years) participated. Group median concentrations of all sugars were higher following sugar administration; however, sucrose and mannitol increases were not statistically significant. Within individual patients, sucrose and mannitol concentrations were higher in baseline than after sugar ingestion in 9 (43%) and 4 (19%) patients, respectively. Patients with impaired (n = 9) vs normal (n = 12) renal function had a higher L-R ratio (median, 0.130 vs 0.047; P = .003), lower rhamnose recovery (median, 15% vs 24%; P = .007), and no difference in lactulose recovery. CONCLUSION: Small-bowel and whole-gut permeability measurements are possible to complete in the nonfasted state, whereas gastroduodenal permeability could not be measured reliably. For small-bowel IP measurements, the L-R ratio is preferred over the L-M ratio. Alterations in renal function may reduce the reliability of the multisugar IP test, warranting further exploration.


Assuntos
Estado Terminal , Respiração Artificial , Adulto , Estado Terminal/terapia , Humanos , Absorção Intestinal , Masculino , Permeabilidade , Projetos Piloto , Reprodutibilidade dos Testes
2.
Nutr Res ; 78: 82-92, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32563954

RESUMO

The association between intestinal permeability (IP) and body composition remains unclear. The gold standard differential sugar-absorption test is arduous to complete, with zonulin being increasingly used as an independent biomarker of IP. This pilot study aimed to explore the association between small IP, zonulin concentrations, and body composition in healthy adults. The urinary lactulose-rhamnose ratio was used to measure small IP. Serum zonulin, lipopolysaccharide (LPS) and high-sensitivity C-reactive protein (hs-CRP) were analyzed in serum. Body composition was measured using dual-energy X-ray absorptiometry and anthropometric measurements were collected. In total, 34 participants were included (12 males, median age 28 years, body mass index 24 kg/m2, waist circumference 77cm). No correlation was observed between the lactulose-rhamnose ratio and zonulin (r = -.016, P = .929). The lactulose-rhamnose ratio displayed a strong positive correlation with LPS (n 20, r = .536, P = .018) but did not correlate with body composition measures. Conversely, zonulin displayed a moderate positive correlation with waist circumference (r = .437, P = .042) in female participants and hs-CRP (r = .485, P = .004) in all participants. These findings raise important considerations for the measurement of small IP, warranting exploration in larger powered studies that address the limitations of the present study.


Assuntos
Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Precursores de Proteínas/sangue , Adulto , Composição Corporal , Índice de Massa Corporal , Proteína C-Reativa/análise , Ensaio de Imunoadsorção Enzimática , Feminino , Haptoglobinas , Humanos , Lactulose/urina , Lipopolissacarídeos/sangue , Masculino , Permeabilidade , Projetos Piloto , Reprodutibilidade dos Testes , Ramnose/urina
3.
Metabolites ; 6(4)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27983674

RESUMO

Although significant advances have been made in recent years, the structural elucidation of small molecules continues to remain a challenging issue for metabolite profiling. Many metabolomic studies feature unknown compounds; sometimes even in the list of features identified as "statistically significant" in the study. Such metabolic "dark matter" means that much of the potential information collected by metabolomics studies is lost. Accurate structure elucidation allows researchers to identify these compounds. This in turn, facilitates downstream metabolite pathway analysis, and a better understanding of the underlying biology of the system under investigation. This review covers a range of methods for the structural elucidation of individual compounds, including those based on gas and liquid chromatography hyphenated to mass spectrometry, single and multi-dimensional nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry and includes discussion of data standardization. Future perspectives in structure elucidation are also discussed; with a focus on the potential development of instruments and techniques, in both nuclear magnetic resonance spectroscopy and mass spectrometry that, may help solve some of the current issues that are hampering the complete identification of metabolite structure and function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa