RESUMO
Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as a microscopic feature of the neocortex in animals. The same property has been investigated at mesoscale (<1 mm) in the homologous brain area (hMT+, V5) in living humans by using ultra-high field functional magnetic resonance imaging (fMRI). Despite the reproducibility of the selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still lacking. Using cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial specificity to microvasculature, we investigate the columnar functional organization of hMT+ in 5 participants perceiving axis-of-motion stimuli for both blood oxygenation level dependent (BOLD) and vascular space occupancy (VASO) contrast mechanisms provided by the used slice-selective slab-inversion (SS-SI)-VASO sequence. With the development of a new searchlight algorithm for column detection, we provide the first quantitative columnarity map that characterizes the entire 3D hMT+ volume. Using voxel-wise measures of sensitivity and specificity, we demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features by revealing higher specificity of axis-of-motion cortical columns for VASO as compared to BOLD contrast. These voxel-wise metrics also provide further insights on how to mitigate the highly debated draining veins effect. We conclude that using CBV-VASO fMRI together with voxel-wise measurements of sensitivity, specificity and columnarity offers a promising avenue to quantify the mesoscopic organization of hMT+ with respect to axis-of-motion stimuli. Furthermore, our approach and methodological developments are generalizable and applicable to other human brain areas where similar mesoscopic research questions are addressed.
Assuntos
Mapeamento Encefálico , Neocórtex , Animais , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodosRESUMO
This study explores the subjective evaluation of supplementary motor area (SMA) regulation performance in a real-time functional magnetic resonance imaging neurofeedback (fMRI-NF) task. In fMRI-NF, people learn how to self-regulate their brain activity by performing mental actions to achieve a certain target level (TL) of blood-oxygen-level-dependent (BOLD) activation. Here, we studied two types of self-evaluation: performance predictions and perceived confidence in the prediction judgement. Participants completed three sessions of SMA regulation in a 7 T fMRI scanner, performing a mental drawing task. During each trial, they modulated their imagery strategy to achieve one of two different levels of SMA activation and reported a performance prediction and their confidence in the prediction before receiving delayed BOLD-activation feedback. Results show that participants' performance predictions improved with learning throughout the three sessions, and that these improvements were not driven exclusively by their knowledge of previous performance. Confidence reports on the other hand showed no change throughout training and did not correlate with better and worse predictions. In addition to shedding light on mechanisms of internal self-evaluation during neurofeedback training, these results also point to a dissociation between predictions of performance and confidence reports in the presence of feedback. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Assuntos
Imageamento por Ressonância Magnética , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Autoavaliação (Psicologia)RESUMO
Significance: Functional near-infrared spectroscopy (fNIRS) is a promising tool for neurofeedback (NFB) or brain-computer interfaces (BCIs). However, fNIRS signals are typically highly contaminated by systemic activity (SA) artifacts, and, if not properly corrected, NFB or BCIs run the risk of being based on noise instead of brain activity. This risk can likely be reduced by correcting for SA, in particular when short-distance channels (SDCs) are available. Literature comparing correction methods with and without SDCs is still sparse, specifically comparisons considering single trials are lacking. Aim: This study aimed at comparing the performance of SA correction methods with and without SDCs. Approach: Semisimulated and real motor task data of healthy older adults were used. Correction methods without SDCs included a simple and a more advanced spatial filter. Correction methods with SDCs included a regression approach considering only the closest SDC and two GLM-based methods, one including all eight SDCs and one using only two a priori selected SDCs as regressors. All methods were compared with data uncorrected for SA and correction performance was assessed with quality measures quantifying signal improvement and spatial specificity at single trial level. Results: All correction methods were found to improve signal quality and enhance spatial specificity as compared with the uncorrected data. Methods with SDCs usually outperformed methods without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the exact pattern of results and the degree of differences observable between correction methods varied between semisimulated and real data, and also between quality measures. Conclusions: Overall, results confirmed that both Δ [ HbO ] and Δ [ HbR ] are affected by SA and that correction methods with SDCs outperform methods without SDCs. Nonetheless, improvements in signal quality can also be achieved without SDCs and should therefore be given priority over not correcting for SA.
RESUMO
Significance: Brain-computer interfaces (BCIs) can provide severely motor-impaired patients with a motor-independent communication channel. Functional near-infrared spectroscopy (fNIRS) constitutes a promising BCI-input modality given its high mobility, safety, user comfort, cost-efficiency, and relatively low motion sensitivity. Aim: The present study aimed at developing an efficient and convenient two-choice fNIRS communication BCI by implementing a relatively short encoding time (2 s), considerably increasing communication speed, and decreasing the cognitive load of BCI users. Approach: To encode binary answers to 10 biographical questions, 10 healthy adults repeatedly performed a combined motor-speech imagery task within 2 different time windows guided by auditory instructions. Each answer-encoding run consisted of 10 trials. Answers were decoded during the ongoing experiment from the time course of the individually identified most-informative fNIRS channel-by-chromophore combination. Results: The answers of participants were decoded online with an accuracy of 85.8% (run-based group mean). Post-hoc analysis yielded an average single-trial accuracy of 68.1%. Analysis of the effect of number of trial repetitions showed that the best information-transfer rate could be obtained by combining four encoding trials. Conclusions: The study demonstrates that an encoding time as short as 2 s can enable immediate, efficient, and convenient fNIRS-BCI communication.
RESUMO
Currently, the gold standard for high-resolution mapping of cortical electrophysiological activity is invasive electrocorticography (ECoG), a procedure that carries with it the risk of serious morbidity and mortality. Due to these risks, the use of ECoG is largely limited to pre-surgical mapping in intractable epilepsy. Nevertheless, many seminal studies in neuroscience have utilized ECoG to explore domains such as visual perception, attention, auditory processing, and sensorimotor behavior. Studies such as these, occurring in patients with epilepsy rather than healthy controls, may lack generalizability, and are limited by the placement of the electrode arrays over the presumed seizure focus. This manuscript explores the use of optically pumped magnetometers (OPMs) to create a non-invasive alternative to ECoG, which we refer to as magnetocorticography. Because prior ECoG studies reveal that most cognitive processes are driven by multiple, simultaneous independent neuronal assemblies, we characterize the ability of a theoretical 56-channel dense OPM array to resolve simultaneous independent sources, and compare it to currently available SQUID devices, as well as OPM arrays with inter-sensor spacings more typical of other systems in development. Our evaluation of this theoretical system assesses many potential sources of error, including errors of sensor calibration and position. In addition, we investigate the influence of geometrical and anatomical factors on array performance. Our simulations reveal the potential of high-density, on-scalp OPM MEG devices to localize electrophysiological brain responses at unprecedented resolution for a non-invasive device.
RESUMO
Significance: Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS) experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest depend on how optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-based brain-computer interfaces (BCIs), where developing robust systems with few optodes is crucial for clinical applications. Aim: Available resources often dictate the approach researchers use for optode-layout design. We investigated whether guiding optode layout design using different amounts of subject-specific magnetic resonance imaging (MRI) data affects the fNIRS signal quality and sensitivity to brain activation when healthy participants perform mental-imagery tasks typically used in fNIRS-BCI experiments. Approach: We compared four approaches that incrementally incorporated subject-specific MRI information while participants performed mental-calculation, mental-rotation, and inner-speech tasks. The literature-based approach (LIT) used a literature review to guide the optode layout design. The probabilistic approach (PROB) employed individual anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The individual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth approach used individual anatomical, functional, and vascular information of the same subject (fVASC). Results: The four approaches resulted in different optode layouts and the more informed approaches outperformed the minimally informed approach (LIT) in terms of signal quality and sensitivity. Further, PROB, iFMRI, and fVASC approaches resulted in a similar outcome. Conclusions: We conclude that additional individual MRI data lead to a better outcome, but that not all the modalities tested here are required to achieve a robust setup. Finally, we give preliminary advice to efficiently using resources for developing robust optode layouts for BCI and neurofeedback applications.
RESUMO
Severely motor-disabled patients, such as those suffering from the so-called "locked-in" syndrome, cannot communicate naturally. They may benefit from brain-computer interfaces (BCIs) exploiting brain signals for communication and therewith circumventing the muscular system. One BCI technique that has gained attention recently is functional near-infrared spectroscopy (fNIRS). Typically, fNIRS-based BCIs allow for brain-based communication via voluntarily modulation of brain activity through mental task performance guided by visual or auditory instructions. While the development of fNIRS-BCIs has made great progress, the reliability of fNIRS-BCIs across time and environments has rarely been assessed. In the present fNIRS-BCI study, we tested six healthy participants across three consecutive days using a straightforward four-choice fNIRS-BCI communication paradigm that allows answer encoding based on instructions using various sensory modalities. To encode an answer, participants performed a motor imagery task (mental drawing) in one out of four time periods. Answer encoding was guided by either the visual, auditory, or tactile sensory modality. Two participants were tested outside the laboratory in a cafeteria. Answers were decoded from the time course of the most-informative fNIRS channel-by-chromophore combination. Across the three testing days, we obtained mean single- and multi-trial (joint analysis of four consecutive trials) accuracies of 62.5 and 85.19%, respectively. Obtained multi-trial accuracies were 86.11% for visual, 80.56% for auditory, and 88.89% for tactile sensory encoding. The two participants that used the fNIRS-BCI in a cafeteria obtained the best single- (72.22 and 77.78%) and multi-trial accuracies (100 and 94.44%). Communication was reliable over the three recording sessions with multi-trial accuracies of 86.11% on day 1, 86.11% on day 2, and 83.33% on day 3. To gauge the trade-off between number of optodes and decoding accuracy, averaging across two and three promising fNIRS channels was compared to the one-channel approach. Multi-trial accuracy increased from 85.19% (one-channel approach) to 91.67% (two-/three-channel approach). In sum, the presented fNIRS-BCI yielded robust decoding results using three alternative sensory encoding modalities. Further, fNIRS-BCI communication was stable over the course of three consecutive days, even in a natural (social) environment. Therewith, the developed fNIRS-BCI demonstrated high flexibility, reliability and robustness, crucial requirements for future clinical applicability.
RESUMO
Augmented reality (AR) enhances the user's environment by projecting virtual objects into the real world in real-time. Brain-computer interfaces (BCIs) are systems that enable users to control external devices with their brain signals. BCIs can exploit AR technology to interact with the physical and virtual world and to explore new ways of displaying feedback. This is important for users to perceive and regulate their brain activity or shape their communication intentions while operating in the physical world. In this study, twelve healthy participants were introduced to and asked to choose between two motor-imagery tasks: mental drawing and interacting with a virtual cube. Participants first performed a functional localizer run, which was used to select a single fNIRS channel for decoding their intentions in eight subsequent choice-encoding runs. In each run participants were asked to select one choice of a six-item list. A rotating AR cube was displayed on a computer screen as the main stimulus, where each face of the cube was presented for 6 s and represented one choice of the six-item list. For five consecutive trials, participants were instructed to perform the motor-imagery task when the face of the cube that represented their choice was facing them (therewith temporally encoding the selected choice). In the end of each run, participants were provided with the decoded choice based on a joint analysis of all five trials. If the decoded choice was incorrect, an active error-correction procedure was applied by the participant. The choice list provided in each run was based on the decoded choice of the previous run. The experimental design allowed participants to navigate twice through a virtual menu that consisted of four levels if all choices were correctly decoded. Here we demonstrate for the first time that by using AR feedback and flexible choice encoding in form of search trees, we can increase the degrees of freedom of a BCI system. We also show that participants can successfully navigate through a nested menu and achieve a mean accuracy of 74% using a single motor-imagery task and a single fNIRS channel.
RESUMO
"Locked-in" patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments. The present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary communication paradigm that requires limited preparation time and merely nine optodes. Eighteen healthy participants performed two mental imagery tasks, mental drawing and spatial navigation, to answer yes/no questions during one of two auditorily cued time windows. Each of the six questions was answered five times, resulting in five trials per answer. This communication paradigm thus combines both spatial (two different mental imagery tasks, here mental drawing for "yes" and spatial navigation for "no") and temporal (distinct time windows for encoding a "yes" and "no" answer) fNIRS signal features for information encoding. Participants' answers were decoded in simulated real-time using general linear model analysis. Joint analysis of all five encoding trials resulted in an average accuracy of 66.67 and 58.33% using the oxygenated (HbO) and deoxygenated (HbR) hemoglobin signal respectively. For half of the participants, an accuracy of 83.33% or higher was reached using either the HbO signal or the HbR signal. For four participants, effective communication with 100% accuracy was achieved using either the HbO or HbR signal. An explorative analysis investigated the differentiability of the two mental tasks based solely on spatial fNIRS signal features. Using multivariate pattern analysis (MVPA) group single-trial accuracies of 58.33% (using 20 training trials per task) and 60.56% (using 40 training trials per task) could be obtained. Combining the five trials per run using a majority voting approach heightened these MVPA accuracies to 62.04 and 75%. Additionally, an fNIRS suitability questionnaire capturing participants' physical features was administered to explore its predictive value for evaluating general data quality. Obtained questionnaire scores correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities. While more work is needed to further increase decoding accuracy, this study shows the potential of answer encoding using spatiotemporal fNIRS signal features or spatial fNIRS signal features only.