Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Xenobiotica ; : 1-13, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738708

RESUMO

1. Over the past two decades antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilize a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.2. Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.3. Legumain is abundantly present in lysosomes and is known to play a role in tumor microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin cleavable ADC to a matched Asn-containing legumain-cleavable ADC.4. We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumors, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa