Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 586(7831): 741-748, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116287

RESUMO

The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.


Assuntos
Variação Genética , Genoma Humano/genética , Genômica , Saúde , Migração Humana , África/etnologia , Reparo do DNA/genética , Conjuntos de Dados como Assunto , Feminino , Fluxo Gênico , Genética Médica , Genética Populacional , Saúde/história , História Antiga , Migração Humana/história , Humanos , Imunidade/genética , Idioma , Masculino , Metabolismo/genética , Seleção Genética , Sequenciamento Completo do Genoma
2.
J Med Virol ; 96(9): e29918, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39311394

RESUMO

Patients with Primary immunodeficiency (PIDs) may be infected by Polioviruses (PVs), especially when vaccinated with live Oral Polio Vaccine before diagnosis. They may establish long-term shedding of divergent strains and may act as reservoirs of PV transmission. This study delved into the effect of the genetic evolution of complete PV genomes, from MHC class II-deficient patients, on the excretion duration and clinical outcomes. Stool samples from three PID patients underwent analysis for PV detection through inoculation on cell culture and real-time PCR, followed by VP1 partial sequencing and full genome sequencing using the Illumina technology. Our findings revealed a low number of mutations for one patient who cleared the virus, while two exhibited a high intra-host diversity favoring the establishment of severe outcomes. Neurovirulence-reverse mutations were detected in two patients, possibly leading to paralysis development. Furthermore, a recombination event, between type 3 Vaccine-Derived Poliovirus and Sabin-like1 (VDPV3/SL1), occurred in one patient. Our findings have suggested an association between intra-host diversity, recombination, prolonged excretion of the virus, and emergence of highly pathogenic strains. Further studies on intra-host diversity are crucial for a better understanding of the virus evolution as well as for the success of the Global Polio Eradication Initiative.


Assuntos
Fezes , Mutação , Poliomielite , Vacina Antipólio Oral , Poliovirus , Recombinação Genética , Eliminação de Partículas Virais , Humanos , Poliovirus/genética , Poliovirus/classificação , Poliovirus/isolamento & purificação , Poliovirus/imunologia , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/efeitos adversos , Poliomielite/virologia , Poliomielite/prevenção & controle , Fezes/virologia , Masculino , Feminino , Genoma Viral/genética , Variação Genética , Doenças da Imunodeficiência Primária/genética , Pré-Escolar , Evolução Molecular , Criança , Lactente , Virulência/genética , Filogenia
3.
Plant J ; 107(1): 21-36, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837593

RESUMO

Plants are the world's most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population's increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.


Assuntos
Agricultura , Produtos Agrícolas/genética , Genoma de Planta , Genômica/tendências , África , Biotecnologia , Genômica/métodos , Medicina Herbária , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Plantas Medicinais/genética , Triticum/genética
5.
BMC Microbiol ; 20(1): 322, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33096980

RESUMO

BACKGROUND: Whole-genome sequencing using high throughput technologies has revolutionized and speeded up the scientific investigation of bacterial genetics, biochemistry, and molecular biology. Lactic acid bacteria (LABs) have been extensively used in fermentation and more recently as probiotics in food products that promote health. Genome sequencing and functional genomics investigations of LABs varieties provide rapid and important information about their diversity and their evolution, revealing a significant molecular basis. This study investigated the whole genome sequences of the Enterococcus faecium strain (HG937697), isolated from the mucus of freshwater fish in Tunisian dams. Genomic DNA was extracted using the Quick-GDNA kit and sequenced using the Illumina HiSeq2500 system. Sequences quality assessment was performed using FastQC software. The complete genome annotation was carried out with the Rapid Annotation using Subsystem Technology (RAST) web server then NCBI PGAAP. RESULTS: The Enterococcus faecium R.A73 assembled in 28 contigs consisting of 2,935,283 bps. The genome annotation revealed 2884 genes in total including 2834 coding sequences and 50 RNAs containing 3 rRNAs (one rRNA 16 s, one rRNA 23 s and one rRNA 5 s) and 47 tRNAs. Twenty-two genes implicated in bacteriocin production are identified within the Enterococcus faecium R.A73 strain. CONCLUSION: Data obtained provide insights to further investigate the effective strategy for testing this Enterococcus faecium R.A73 strain in the industrial manufacturing process. Studying their metabolism with bioinformatics tools represents the future challenge and contribution to improving the utilization of the multi-purpose bacteria in food.


Assuntos
Infecções Bacterianas/veterinária , Bacteriocinas/genética , Enterococcus faecium/genética , Peixes/microbiologia , Animais , Fermentação , Água Doce , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillales/genética , Filogenia , Sequenciamento Completo do Genoma
6.
Genome Res ; 26(2): 271-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26627985

RESUMO

The application of genomics technologies to medicine and biomedical research is increasing in popularity, made possible by new high-throughput genotyping and sequencing technologies and improved data analysis capabilities. Some of the greatest genetic diversity among humans, animals, plants, and microbiota occurs in Africa, yet genomic research outputs from the continent are limited. The Human Heredity and Health in Africa (H3Africa) initiative was established to drive the development of genomic research for human health in Africa, and through recognition of the critical role of bioinformatics in this process, spurred the establishment of H3ABioNet, a pan-African bioinformatics network for H3Africa. The limitations in bioinformatics capacity on the continent have been a major contributory factor to the lack of notable outputs in high-throughput biology research. Although pockets of high-quality bioinformatics teams have existed previously, the majority of research institutions lack experienced faculty who can train and supervise bioinformatics students. H3ABioNet aims to address this dire need, specifically in the area of human genetics and genomics, but knock-on effects are ensuring this extends to other areas of bioinformatics. Here, we describe the emergence of genomics research and the development of bioinformatics in Africa through H3ABioNet.


Assuntos
População Negra/genética , Promoção da Saúde , África , Biologia Computacional , Sistemas Computacionais , Variação Genética , Genética Médica , Genômica , Humanos
7.
Biochem Biophys Res Commun ; 496(4): 1025-1032, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29382529

RESUMO

Scorpion envenoming and its treatment is a public health problem in many parts of the world due to highly toxic venom polypeptides diffusing rapidly within the body of severely envenomed victims. Recently, 38 AahII-specific Nanobody sequences (Nbs) were retrieved from which the performance of NbAahII10 nanobody candidate, to neutralize the most poisonous venom compound namely AahII acting on sodium channels, was established. Herein, structural computational approach is conducted to elucidate the Nb-AahII interactions that support the biological characteristics, using Nb multiple sequence alignment (MSA) followed by modeling and molecular docking investigations (RosettaAntibody, ZDOCK software tools). Sequence and structural analysis showed two dissimilar residues of NbAahII10 CDR1 (Tyr27 and Tyr29) and an inserted polar residue Ser30 that appear to play an important role. Indeed, CDR3 region of NbAahII10 is characterized by a specific Met104 and two negatively charged residues Asp115 and Asp117. Complex dockings reveal that NbAahII17 and NbAahII38 share one common binding site on the surface of the AahII toxin divergent from the NbAahII10 one's. At least, a couple of NbAahII10 - AahII residue interactions (Gln38 - Asn44 and Arg62, His64, respectively) are mainly involved in the toxic AahII binding site. Altogether, this study gives valuable insights in the design and development of next generation of antivenom.


Assuntos
Mapeamento de Epitopos/métodos , Modelos Químicos , Simulação de Acoplamento Molecular , Venenos de Escorpião/química , Escorpiões , Anticorpos de Domínio Único/química , Animais , Sítios de Ligação , Epitopos/química , Nanopartículas/química , Ligação Proteica , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos
8.
Evol Bioinform Online ; 20: 11769343241272415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149136

RESUMO

The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.

9.
J Clin Virol ; 170: 105633, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103483

RESUMO

West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.


Assuntos
Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Sensibilidade e Especificidade , RNA Viral/genética
10.
Database (Oxford) ; 20242024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204360

RESUMO

There is growing evidence that comprehensive and harmonized metadata are fundamental for effective public data reusability. However, it is often challenging to extract accurate metadata from public repositories. Of particular concern is the metagenomic data related to African individuals, which often omit important information about the particular features of these populations. As part of a collaborative consortium, H3ABioNet, we created a web portal, namely the African Human Microbiome Portal (AHMP), exclusively dedicated to metadata related to African human microbiome samples. Metadata were collected from various public repositories prior to cleaning, curation and harmonization according to a pre-established guideline and using ontology terms. These metadata sets can be accessed at https://microbiome.h3abionet.org/. This web portal is open access and offers an interactive visualization of 14 889 records from 70 bioprojects associated with 72 peer reviewed research articles. It also offers the ability to download harmonized metadata according to the user's applied filters. The AHMP thereby supports metadata search and retrieve operations, facilitating, thus, access to relevant studies linked to the African Human microbiome. Database URL:  https://microbiome.h3abionet.org/.


Assuntos
Metadados , Microbiota , Humanos , Metagenoma , Bases de Dados Factuais , Metagenômica , Microbiota/genética
11.
Genome Med ; 16(1): 104, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187811

RESUMO

BACKGROUND: Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients. METHODS: A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system. RESULTS: In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector. CONCLUSIONS: Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.


Assuntos
Genoma Humano , Medicina de Precisão , Medicina de Precisão/métodos , Humanos , Tunísia , Genômica/métodos , África do Norte
12.
Nat Genet ; 56(8): 1556-1565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977855

RESUMO

The African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics aims to overcome barriers to capacity building through its distributed African regional workshops and prioritizes the exchange of grassroots knowledge and innovation in biodiversity genomics and bioinformatics. In 2023, we implemented 28 workshops on biodiversity genomics and bioinformatics, covering 11 African countries across the 5 African geographical regions. These regional workshops trained 408 African scientists in hands-on molecular biology, genomics and bioinformatics techniques as well as the ethical, legal and social issues associated with acquiring genetic resources. Here, we discuss the implementation of transformative strategies, such as expanding the regional workshop model of AfricaBP to involve multiple countries, institutions and partners, including the proposed creation of an African digital database with sequence information relating to both biodiversity and agriculture. This will ultimately help create a critical mass of skilled genomics and bioinformatics scientists across Africa.


Assuntos
Biologia Computacional , Genômica , Genômica/educação , Biologia Computacional/métodos , Biologia Computacional/educação , África , Humanos , Biodiversidade
13.
Evol Bioinform Online ; 19: 11769343231212266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033662

RESUMO

Bluetongue virus (BTV) is an arbovirus considered as a major threat for the global livestock economy. Since 1999, Tunisia has experienced several incursions of BTV, during which numerous cases of infection and mortality have been reported. However, the geographical origin and epidemiological characteristics of these incursions remained unclear. To understand the evolutionary history of BTV emergence in Tunisia, we extracted from Genbank the segment 6 sequences of 7 BTV strains isolated in Tunisia during the period 2000 to 2017 and blasted them to obtain a final dataset of 67 sequences. We subjected the dataset to a Bayesian phylogeography framework inferring geographical origin and serotype as phylodynamic models. Our results suggest that BTV-2 was first introduced in Tunisia in the 1960s and that since 1990s, the country has witnessed the emergence of other typical and atypical BTV serotypes notably BTV-1, BTV-3 and BTV-Y. The reported serotypes have a diverse geographical origin and have been transmitted to Tunisia from countries in the Mediterranean Basin. Interserotype reassortments have been identified among BTV-1, BTV-2 and BTV-Y. This study has provided new insights on the temporal and geographical origin of BTV in Tunisia, suggesting the contribution of animal trade and environment conditions in virus spread.

14.
Front Immunol ; 14: 1111072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187743

RESUMO

Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.


Assuntos
Leishmania major , Leishmaniose , Animais , Camundongos , Leishmania major/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos , Transcriptoma , Suscetibilidade a Doenças/metabolismo
15.
Glob Health Epidemiol Genom ; 2023: 6693323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766808

RESUMO

Modern biomedical research is characterised by its high-throughput and interdisciplinary nature. Multiproject and consortium-based collaborations requiring meaningful analysis of multiple heterogeneous phenotypic datasets have become the norm; however, such analysis remains a challenge in many regions across the world. An increasing number of data harmonisation efforts are being undertaken by multistudy collaborations through either prospective standardised phenotype data collection or retrospective phenotype harmonisation. In this regard, the Phenotype Harmonisation Working Group (PHWG) of the Human Heredity and Health in Africa (H3Africa) consortium aimed to facilitate phenotype standardisation by both promoting the use of existing data collection standards (hosted by PhenX), adapting existing data collection standards for appropriate use in low- and middle-income regions such as Africa, and developing novel data collection standards where relevant gaps were identified. Ultimately, the PHWG produced 11 data collection kits, consisting of 82 protocols, 38 of which were existing protocols, 17 were adapted, and 27 were novel protocols. The data collection kits will facilitate phenotype standardisation and harmonisation not only in Africa but also across the larger research community. In addition, the PHWG aims to feed back adapted and novel protocols to existing reference platforms such as PhenX.


Assuntos
Estudos Prospectivos , Humanos , Estudos Retrospectivos , África , Coleta de Dados , Fenótipo
16.
Pan Afr Med J ; 41: 223, 2022.
Artigo em Francês | MEDLINE | ID: mdl-35721633

RESUMO

Introduction: travellers to endemic areas must know malaria, its risk factors and prophylactic measures. This can help to avoid severe cases of malaria and to prevent transmission in countries that are malaria-free. The purpose of this study is to assess Tunisian travellers´ knowledge about malaria, its transmission and prevention and their adherence to prophylactic measures. Methods: we conducted a survey based on two anonymous questionnaires (pre- and post-trip) among adults travelling to endemic countries. The 1st questionnaire was followed by a medical interview focusing on level of risk and recommended prophylactic measures. Results: two hundred and eighty-nine travellers were recruited. They mainly moved within sub-Saharan Africa (99%) for professional reasons (84,4%). The average age of subjects was 42.3 years and sex ratio (male/female) was 3.1. Prior to departure, only 53.3% of subjects were aware of the risk of malaria, and only 28% gave correct answers about modes of transmission. Recommendations for chemoprophylaxis were only known by 62.3% of subjects and only 43.6% intended to use chemoprophylaxis (p < 0.01). Better adherence to protective measures, including chemoprophylaxis, was reported after the trip, with attitudes qualified as good or excellent by 64.2% on return against 23.7% before the interview (<0.001). Conclusion: Tunisian travellers knowledge of malaria is insufficient. Strengthening information through specialized consultations (whose usefulness has been demonstrated) is required.


Assuntos
Antimaláricos , Malária , Adulto , África Subsaariana , Antimaláricos/uso terapêutico , Quimioprevenção , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Malária/epidemiologia , Masculino , Viagem
17.
Pathogens ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145448

RESUMO

Equid herpesvirus (EHV) is a contagious viral disease affecting horses, causing illness characterized by respiratory symptoms, abortion and neurological disorders. It is common worldwide and causes severe economic losses to the equine industry. The present study was aimed at investigating the incidence of EHVs, the genetic characterization of Tunisian isolates and a spatiotemporal study, using 298 collected samples from diseased and clinically healthy horses. The global incidence of EHV infection was found to be about 71.81%. EHV2 and EHV5 were detected in 146 (48.99%) and 159 (53.35%) sampled horses, respectively. EHV1 was detected in 11 samples (3.69%); EHV4 was not detected. Co-infections with EHV1-EHV2, EHV1-EHV5 and EHV2-EHV5 were observed in 0.33%, 1.34% and 31.54% of tested horses, respectively. Phylogenetic analyses showed that gB of EHV2 and EHV5 displays high genetic diversity with a nucleotide sequence identity ranging from 88 to 100% for EHV2 and 97.5 to 100% for EHV5. Phylogeography suggested Iceland and USA as the most likely countries of origin of the Tunisian EHV2 and EHV5 isolates. These viruses detected in Tunisia seemed to be introduced in the 2000s. This first epidemiological and phylogeographic study is important for better knowledge of the evolution of equid herpesvirus infections in Tunisia.

18.
Front Microbiol ; 13: 780568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547149

RESUMO

Microbiota colonization is a dynamic process that impacts the health status during an individual's lifetime. The composition of the gut microbiota of newborns is conditioned by multiple factors, including the delivery mode (DM). Nonetheless, the DM's influence remains uncertain and is still the subject of debate. In this context, the medical indication and the emergency of a cesarean delivery might have led to confounding conclusions regarding the composition and diversity of the neonatal microbiome. Herein, we used high-resolution shotgun sequencing to decipher the composition and dynamics of the gut microbiota composition of Tunisian newborns. Stool samples were collected from 5 elective cesarean section (ECS) and 5 vaginally delivered (VD) newborns at the following time points: Day 0, Day 15, and Day 30. The ECS and VD newborns showed the same level of bacterial richness and diversity. In addition, our data pointed to a shift in microbiota community composition during the first 2 weeks, regardless of the DM. Both ECS and VD showed a profile dominated by Proteobacteria, Actinobacteria, and Firmicutes. However, ECS showed an underrepresentation of Bacteroides and an enrichment of opportunistic pathogenic species of the ESKAPE group, starting from the second week. Besides revealing the intestinal microbiota of Tunisian newborns, this study provides novel insights into the microbiota perturbations caused by ECS.

19.
Infect Genet Evol ; 102: 105300, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35552003

RESUMO

Since the beginning of the Coronavirus disease-2019 pandemic, there has been a growing interest in exploring SARS-CoV-2 genetic variation to understand the origin and spread of the pandemic, improve diagnostic methods and develop the appropriate vaccines. The objective of this study was to identify the SARS-CoV-2s lineages circulating in Tunisia and to explore their amino acid signature in order to follow their genome dynamics. Whole genome sequencing and genetic analyses of fifty-eight SARS-CoV-2 samples collected during one-year between March 2020 and March 2021 from the National Influenza Center were performed using three sampling strategies.. Multiple lineage introductions were noted during the initial phase of the pandemic, including B.4, B.1.1, B.1.428.2, B.1.540 and B.1.1.189. Subsequently, lineages B1.160 (24.2%) and B1.177 (22.4%) were dominant throughout the year. The Alpha variant (B.1.1.7 lineage) was identified in February 2021 and firstly observed in the center of our country. In addition, A clear diversity of lineages was observed in the North of the country. A total of 335 mutations including 10 deletions were found. The SARS-CoV-2 proteins ORF1ab, Spike, ORF3a, and Nucleocapsid were observed as mutation hotspots with a mutation frequency exceeding 20%. The 2 most frequent mutations, D614G in S protein and P314L in Nsp12 appeared simultaneously and are often associated with increased viral infectivity. Interestingly, deletions in coding regions causing consequent deletions of amino acids and frame shifts were identified in NSP3, NSP6, S, E, ORF7a, ORF8 and N proteins. These findings contribute to define the COVID-19 outbreak in Tunisia. Despite the country's limited resources, surveillance of SARS-CoV-2 genomic variation should be continued to control the occurrence of new variants.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos/genética , COVID-19/epidemiologia , Genoma Viral , Humanos , Mutação , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Tunísia/epidemiologia
20.
Nat Commun ; 13(1): 1152, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241661

RESUMO

In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Pandemias , SARS-CoV-2/imunologia , África Ocidental/epidemiologia , Substituição de Aminoácidos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , COVID-19/transmissão , Combinação de Medicamentos , Alemanha/epidemiologia , Saúde Global , Humanos , Evasão da Resposta Imune/genética , Mutação , Filogeografia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa