Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 61(3): 312-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280929

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal, rapidly progressive, neurodegenerative disease caused by motor neuron degeneration. Despite extensive efforts, the underlying cause of ALS and the path of neurodegeneration remain elusive. Astrocyte activation occurs in response to central nervous system (CNS) insult and is considered a double edged sword in many pathological conditions. We propose that reduced glutamatergic and trophic response of astrocytes to activation may, over time, lead to accumulative CNS damage, thus facilitating neurodegeneration. We found that astrocytes derived from the SOD1(G93A) ALS mouse model exhibit a reduced glutamatergic and trophic response to specific activations compared to their wild-type counterparts. Wild-type astrocytes exhibited a robust response when activated with lipopolysaccharide (LPS), G5 or treated with ceftriaxone in many parameters evaluated. These parameters include increased expression of GLT-1 and GLAST the two major astrocytic glutamate transporters, accompanied by a marked increase in the astrocytic glutamate clearance and up-regulation of neurtrophic factor expression. However, not only do un-treated SOD1(G93A) astrocytes take up glutamate less efficiently, but in response to activation they show no further increase in any of the glutamatergic parameters evaluated. Furthermore, activation of wild-type astrocytes, but not SOD1(G93A) astrocytes, improved their ability to protect the motor neuron cell line NSC-34 from glutamate induced excitotoxicity. Our data indicates that altered astrocyte activation may well be pivotal to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Ceftriaxona/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Regulação para Cima/efeitos dos fármacos
2.
Sci Rep ; 8(1): 16393, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401824

RESUMO

Most human neurodegenerative diseases share a phenotype of neuronal protein aggregation. In Amyotrophic Lateral Sclerosis (ALS), the abundant protein superoxide dismutase (SOD1) or the TAR-DNA binding protein TDP-43 can aggregate in motor neurons. Recently, numerous studies have highlighted the ability of aggregates to spread from neuron to neuron in a prion-like fashion. These studies have typically focused on the use of neuron-like cell lines or neurons that are not normally affected by the specific aggregated protein being studied. Here, we have investigated the uptake of pre-formed SOD1 aggregates by cultures containing pluripotent stem cell-derived human motor neurons. We found that all cells take up aggregates by a process resembling fluid-phase endocytosis, just as found in earlier studies. However, motor neurons, despite taking up smaller amounts of SOD1, were much more vulnerable to the accumulating aggregates. Thus, the propagation of disease pathology depends less on selective uptake than on selective response to intracellular aggregates. We further demonstrate that anti-SOD1 antibodies, being considered as ALS therapeutics, can act by blocking the uptake of SOD1, but also by blocking the toxic effects of intracellular SOD1. This work demonstrates the importance of using disease relevant cells even in studying phenomena such as aggregate propagation.


Assuntos
Morte Celular , Neurônios Motores/citologia , Agregados Proteicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Linhagem Celular , Humanos , Neurônios Motores/metabolismo , Transporte Proteico
3.
J Mol Neurosci ; 58(1): 46-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26691332

RESUMO

The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19-22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Ácido Glutâmico/metabolismo , Estresse Oxidativo , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Superóxido Dismutase-1
4.
Stem Cell Reports ; 6(6): 993-1008, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304920

RESUMO

Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body, including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system, provides a platform for the screening of chemical libraries that affect these processes, and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However, defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner, with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells, exhibit spontaneous electrical activity, and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months, even without astrocyte feeder layers.


Assuntos
Técnicas de Cultura de Células , Rede Nervosa/citologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator Neurotrófico Ciliar/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Rede Nervosa/fisiologia , Neurogênese/genética , Neurônios/classificação , Neurônios/citologia , Neurônios/metabolismo , Variações Dependentes do Observador , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/genética , Proteínas Smad/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
J Mol Neurosci ; 48(1): 176-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22638856

RESUMO

Stem cell-based regenerative medicine raises great hope for the treatment of multiple sclerosis (MS). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are being tested in clinical trials. Bone marrow is the traditional source of human MSCs, but human term placenta appears to be an excellent alternative because of its availability, without ethical issues. In this study, the therapeutic effect of human placental MSCs (PL-MSCs) was evaluated in experimental autoimmune encephalomyelitis (EAE), the mice model of MS. EAE mice were transplanted intra-cerebrally with PL-MSCs or with the vehicle saline 5 or 10 days after first MOG injection. The mice were monitored for a month after therapy. A daily EAE score revealed a decrease in disease severity in the transplanted animals when compared to saline. Survival was significantly higher in the transplanted animals. In vitro experiments demonstrated that conditioned media from LPS-activated astrocytes stimulated PL-MSCs to express the gene TNF-α-stimulated gene/protein 6 (TSG-6). The same mRNA expression was obtained when PL-MSCs were exposed to TNF-α or IL1-ß. These results demonstrate that PL-MSCs have a therapeutic effect in the EAE mice model. We assume that this effect is caused by reduction of the anti-inflammatory protein, TSG-6, of the inflammatory damage.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/terapia , Placenta/citologia , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Encéfalo/citologia , Ventrículos Cerebrais/citologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Gravidez , Cultura Primária de Células , Índice de Gravidade de Doença , Medula Espinal/citologia , Baço/citologia , Transplante Heterólogo
6.
EPMA J ; 1(2): 343-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23199069

RESUMO

Treatment of amyotrophic lateral sclerosis (ALS) has been fueled, in part, by frustration over the shortcomings of the symptomatic drugs available, since these do not impede the progression of this disease. Currently, over 150 different potential therapeutic agents or strategies have been tested in preclinical models of ALS. Unfortunately, therapeutic modifiers of murine ALS have failed to be successfully translated into strategies for patients, probably because of differences in pharmacokinetics of the therapeutic agents, route of delivery, inefficiency of the agents to affect the distinct pathologies of the disease or inherent limitations of the available animal models. Given the multiplicity of the pathological mechanisms implicated in ALS, new therapies should consider the simultaneous manipulation of multiple targets. Additionally, a better management of ALS therapy should include understanding the interactions between potential risk factors, biomarkers and heterogeneous clinical features of the patients, aiming to manage their adverse events or personalize the safety profile of these agents. This review will discuss novel pharmacological approaches concerning adjusted therapy for ALS patients: iron-binding brain permeable multimodal compounds, genetic manipulation and cell-based treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa