Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 42(5): 509-16, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21352910

RESUMO

Interfaces are present in the preparation of pharmaceutical products and are well known for having an influence on the physical stability of proteins. The aim of this study was to examine the conformation (i.e. secondary and tertiary structures) and fibrillation tendency, overall aggregation tendency and thermal stability of adsorbed human insulin at a solid particulate Teflon surface. The effects of changes in the association degree of insulin on the structure and stability have been determined. Using SEC-HPLC, association profiles were determined for insulin aspart, zinc-free human insulin and human insulin with two Zn(2+) per hexamer in concentrations ranging from 0.1 mg/ml to 20 mg/ml. Insulin aspart was 100% monomeric, regardless of concentration. In contrast, human insulin went from 100% monomer to 80% hexamer, and 20% dimer/monomer and zinc-free human insulin from 100% monomer to 70% dimer and 30% monomer with increasing concentration. The secondary structure of the insulins changed upon adsorption, but only minor differences were observed among the insulins. Structural changes were observed when the insulin-surface ratio was varied, but at no point did the structure resemble that of fibrillated insulin in solution. The presence of particles resulted in increased fibrillation of human insulin. The lag-time of fibrillation decreased, when the amount of particles present was increased. In conclusion, the type and association degree of the three insulin variants has no major influence on the secondary structure observed after adsorption of insulin at the solid Teflon surface. However, the presence of particles increases the tendency of insulin to fibrillate.


Assuntos
Hipoglicemiantes/química , Insulina/química , Politetrafluoretileno/química , Adsorção , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa