Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 4(7): e6329, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19629181

RESUMO

Mycobacterium tuberculosis uses multiple mechanisms to avoid elimination by the immune system. We have previously shown that M. tuberculosis can inhibit selected macrophage responses to IFN-gamma through TLR2-dependent and -independent mechanisms. To specifically address the role of TLR2 signaling in mediating this inhibition, we stimulated macrophages with the specific TLR2/1 ligand Pam(3)CSK(4) and assayed responses to IFN-gamma. Pam(3)CSK(4) stimulation prior to IFN-gamma inhibited transcription of the unrelated IFN-gamma-inducible genes, CIITA and CXCL11. Surface expression of MHC class II and secretion of CXCL11 were greatly reduced as well, indicating that the reduction in transcripts had downstream effects. Inhibition of both genes required new protein synthesis. Using chromatin immunoprecipitation, we found that TLR2 stimulation inhibited IFN-gamma-induced RNA polymerase II binding to the CIITA and CXCL11 promoters. Furthermore, TATA binding protein was unable to bind the TATA box of the CXCL11 promoter, suggesting that assembly of transcriptional machinery was disrupted. However, TLR2 stimulation affected chromatin modifications differently at each of the inhibited promoters. Histone H3 and H4 acetylation was reduced at the CIITA promoter but unaffected at the CXCL11 promoter. In addition, NF-kappaB signaling was required for inhibition of CXCL11 transcription, but not for inhibition of CIITA. Taken together, these results indicate that TLR2-dependent inhibition of IFN-gamma-induced gene expression is mediated by distinct, gene-specific mechanisms that disrupt binding of the transcriptional machinery to the promoters.


Assuntos
Interferon gama/fisiologia , Macrófagos/fisiologia , Receptor 2 Toll-Like/fisiologia , Animais , Sequência de Bases , Quimiocina CXCL11/genética , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transativadores/genética
2.
J Bacteriol ; 187(16): 5585-94, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16077103

RESUMO

Agr is a global regulatory system in the staphylococci, operating by a classical two-component signaling module and controlling the expression of most of the genes encoding extracellular virulence factors. As it is autoinduced by a peptide, encoded within the locus, that is the ligand for the signal receptor, it is a sensor of population density or a quorum sensor and is the only known quorum-sensing system in the genus. agr is conserved throughout the staphylococci but has diverged along lines that appear to parallel speciation and subspeciation within the genus. This divergence has given rise to a novel type of interstrain and interspecies cross-inhibition that represents a fundamental aspect of the organism's biology and may be a predominant feature of the evolutionary forces that have driven it. We present evidence, using a newly developed, luciferase-based agr typing scheme, that the evolutionary divergence of the agr system was an early event in the evolution of the staphylococci and long preceded the development of the nucleotide polymorphisms presently used for genotyping. These polymorphisms developed, for the most part, within different agr groups; mobile genetic elements appear also to have diffused recently and, with a few notable exceptions, have come to reside largely indiscriminately within the several agr groups.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Transativadores/genética , Variação Genética , Genótipo , Proteínas Hemolisinas/metabolismo , Hemólise , Luciferases/genética , Fenótipo , Regiões Promotoras Genéticas/fisiologia , Staphylococcus aureus/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa