Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(30): 20167-20187, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027960

RESUMO

Three new organic compounds primarily based on 8-hydroxyquinoline have been successfully synthesized and characterized via different spectroscopic methods (FTIR, 1H, and 13C NMR). The synthesized compounds, namely 5-propoxymethyl-8-hydroxyquinoline (PMHQ), 5-methoxymethyl-8-hydroxyquinoline (MMHQ) and 5-hydroxymethyl-8-hydroxyquinoline (HMHQ), were evaluated as corrosion inhibitors for carbon steel in 1 M HCl solution using electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss measurements at 298 K. Electrochemical measurements confirmed that the newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives are mixed type corrosion inhibitors and confirmed maximum protection efficiencies of 94, 89 and 81% for PMHQ, MMHQ, and HMHQ, respectively, at the optimum concentration of 10-3 M. The EIS spectra confirmed a slightly depressed semi-circle profile with a single time constant in Bode diagrams for the three organic compounds over the whole concentration and temperature ranges studied. The adsorption of PMHQ, MMHQ, and HMHQ on the carbon steel surface followed the Langmuir adsorption isotherm. In addition, the kinetic and thermodynamic parameters for carbon steel corrosion and inhibitor adsorption, respectively, were determined and discussed. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses supported the formation of a protective film on carbon steel in the presence of PMHQ, MMHQ, and HMHQ. Density functional theory calculations (DFT) showed that the effectiveness of the inhibitive actions of the studied compounds correlates well with their electron donating ability, whilst Monte Carlo simulations revealed that the extent and favourability of adsorption of inhibitor molecules on the carbon steel surface establish their corrosion inhibition performances.

2.
RSC Adv ; 14(41): 30295-30316, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39315030

RESUMO

This paper presents a comprehensive study on the corrosion inhibition properties of new organic compounds, (1H-benzimidazol-2-yl)methanethiol (LF1) and 1-dodecyl-2-((dodecylthio)methyl)-1H-benzimidazole (LF2), have been examined for inhibiting of Carbon-Steel (C.S) in 1.0 M HCl. Numerous methods, such as potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis, atomic force microscopy (AFM), contact angle measurements, UV-visible spectroscopy, and theoretical calculations, were used to evaluate the effectiveness in preventing corrosion. The two benzimidazoles (LF1 and LF2)' inhibitory efficacy rose as their concentration increased, peaking at 88.2% and 95.4% respectively. The polarization graphs show a mixed behavior, with anodic predominance for LF1 and cathodic predominance for LF2. Thermodynamic investigations showed that the values of ΔG ads were -40.0 kJ mol-1 for LF1 and -43.1 kJ mol-1 for LF2, highlighting their strong adsorption onto the metal surface. Their adsorption process was in line with the Langmuir isotherm. Density Functional Theory (DFT) and Molecular Dynamics (MD) modeling have been utilized to examine and clarify the relationship between the inhibitor and carbon steel (C.S).

3.
Heliyon ; 6(3): e03620, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211553

RESUMO

Photovoltaic properties of solar cells based on fifteen organic dyes have been studied in this work. B3LYP/6-311G (d,p) methods are realized to obtain geometries and optimize the electronic properties, optical and photovoltaic parameters for some quinoxaline derivatives. The results showed that time dependent DFT investigations using the CAM-B3LYP method with the polarized split-valence 6-311G (d,p) basis sets and the polarizable continuum model PCM model were sensibly able to predict the excitation energies, the spectroscopy of the compounds. HOMO and LUMO energy levels of these molecules can make a positive impact on the process of electron injection and dye regeneration. Gaps energy ΔE g , short-circuit current density J sc, light-harvesting efficiency LHE, injection driving force ΔGinject, total reorganization energy λtotal and open-circuit photovoltage V oc enable qualitative predictions about the reactivity of these dyes.

4.
Int J Biol Macromol ; 141: 137-149, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476392

RESUMO

The inhibition effect of the invasive brown seaweed Sargassum muticum extract (ESM), harvested from the Atlantic coast of Morocco, against the corrosion of carbon steel (CS) in 1 M HCl medium was studied for the first time using gravimetric, electrochemical and surface techniques. The methanolic crude extract of Sargassum muticum (ESM) is rich in alginate biopolymer. The evaluation corrosion tests showed that this algal extract acts as a good mixed corrosion inhibitor for CS substrate in 1 M HCl since inhibition efficiency of 97% was reached with 1 g/L of ESM at 303 K. AC impedance findings showed that the seaweed extract adding in the corrosive electrolyte increases the polarization resistance and conversely decreases the charge capacitance at the interface. Adsorption of ESM on the substrate surface followed the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy analyses (XPS) demonstrated that the corrosion inhibition mechanism of CS substrate in 1 M HCl environment by the investigated algal extract is typical of the chemisorption process and the protective barrier is mainly formed by the adsorbed biological macromolecules.


Assuntos
Alginatos/química , Técnicas Eletroquímicas , Ácido Clorídrico/química , Sargassum/química , Aço/química , Corrosão , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa