Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 90(10): 4926-38, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937030

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and is the leading viral cause of birth defects after congenital infection. HCMV infection relies on the recognition of cell-specific receptors by one of the viral envelope glycoprotein complexes. Either the gH/gL/gO or the gH/gL/UL128/UL130/UL131A (Pentamer) complex has been found to fulfill this role, accounting for HCMV entry into almost all cell types. We have studied the UL116 gene product, a putative open reading frame identified by in silico analysis and predicted to code for a secreted protein. Virus infection experiments in mammalian cells demonstrated that UL116 is expressed late in the HCMV replication cycle and is a heavily glycosylated protein that first localizes to the cellular site of virus assembly and then inserts into the virion envelope. Transient-transfection studies revealed that UL116 is efficiently transported to the plasma membrane when coexpressed with gH and that gL competes with UL116 for gH binding. Further evidence for gH/UL116 complex formation was obtained by coimmunoprecipitation experiments on both transfected and infected cells and biochemical characterization of the purified complex. In summary, our results show that the product of the UL116 gene is an HCMV envelope glycoprotein that forms a novel gH-based complex alternative to gH/gL. Remarkably, the gH/UL116 complex is the first herpesvirus gH-based gL-less complex. IMPORTANCE: HCMV infection can cause severe disease in immunocompromised adults and infants infected in utero The dissection of the HCMV entry machinery is important to understand the mechanism of viral infection and to identify new vaccine antigens. The gH/gL/gO and gH/gL/UL128/UL130/UL131 (Pentamer) complexes play a key role in HCMV cell entry and tropism. Both complexes are formed by an invariant gH/gL scaffold on which the other subunits assemble. Here, we show that the UL116 gene product is expressed in infected cells and forms a heterodimer with gH. The gH/UL116 complex is carried on the infectious virions, although in smaller amounts than gH/gL complexes. No gH/UL116/gL ternary complex formed in transfected cells, suggesting that the gH/UL116 complex is independent from gL. This new gH-based gL-free complex represents a potential target for a protective HCMV vaccine and opens new perspectives on the comprehension of the HCMV cell entry mechanism and tropism.


Assuntos
Citomegalovirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Citomegalovirus/química , Genoma Viral , Humanos , Microscopia Eletrônica , Mutação , Multimerização Proteica , Transfecção , Proteínas do Envelope Viral/química , Montagem de Vírus , Internalização do Vírus
2.
mBio ; 15(8): e0110724, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39041817

RESUMO

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.


Assuntos
Adesinas Bacterianas , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Aderência Bacteriana , Interações Hospedeiro-Patógeno , Lectinas , Humanos , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas/metabolismo , Lectinas/genética , Lectinas/imunologia , Animais , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Ligação Proteica , Camundongos , Células CHO , Cricetulus , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Neisseria meningitidis/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Neisseria meningitidis Sorogrupo B/metabolismo
3.
mBio ; 9(5)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327444

RESUMO

Neisseria meningitidis serogroup B (MenB) is a major cause of sepsis and invasive meningococcal disease. A multicomponent vaccine, 4CMenB, is approved for protection against MenB. Neisserial adhesin A (NadA) is one of the main vaccine antigens, acts in host cell adhesion, and may influence colonization and invasion. Six major genetic variants of NadA exist and can be classified into immunologically distinct groups I and II. Knowledge of the crystal structure of the 4CMenB vaccine component NadA3 (group I) would improve understanding of its immunogenicity, folding, and functional properties and might aid antigen design. Here, X-ray crystallography, biochemical, and cellular studies were used to deeply characterize NadA3. The NadA3 crystal structure is reported; it revealed two unexpected regions of undecad coiled-coil motifs and other conformational differences from NadA5 (group II) not predicted by previous analyses. Structure-guided engineering was performed to increase NadA3 thermostability, and a second crystal structure confirmed the improved packing. Functional NadA3 residues mediating interactions with human receptor LOX-1 were identified. Also, for two protective vaccine-elicited human monoclonal antibodies (5D11, 12H11), we mapped key NadA3 epitopes. These vaccine-elicited human MAbs competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. The data presented provide a significant advance in the understanding of the structure, immunogenicity and function of NadA, one of the main antigens of the multicomponent meningococcus B vaccine.IMPORTANCE The bacterial microbe Neisseria meningitidis serogroup B (MenB) is a major cause of devastating meningococcal disease. An approved multicomponent vaccine, 4CMenB, protects against MenB. Neisserial adhesin A (NadA) is a key vaccine antigen and acts in host cell-pathogen interactions. We investigated the 4CMenB vaccine component NadA3 in order to improve the understanding of its immunogenicity, structure, and function and to aid antigen design. We report crystal structures of NadA3, revealing unexpected structural motifs, and other conformational differences from the NadA5 orthologue studied previously. We performed structure-based antigen design to engineer increased NadA3 thermostability. Functional NadA3 residues mediating interactions with the human receptor LOX-1 and vaccine-elicited human antibodies were identified. These antibodies competed binding of NadA3 to LOX-1, suggesting their potential to inhibit host-pathogen colonizing interactions. Our data provide a significant advance in the overall understanding of the 4CMenB vaccine antigen NadA.


Assuntos
Adesinas Bacterianas/química , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Receptores Depuradores Classe E/metabolismo , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Mapeamento de Epitopos , Humanos , Imunogenicidade da Vacina , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Ligação Proteica , Domínios Proteicos
4.
Sci Rep ; 6: 27996, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302108

RESUMO

During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , Neisseria meningitidis/fisiologia , Análise Serial de Proteínas/métodos , Staphylococcus aureus/fisiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Células CHO , Complemento C1q/metabolismo , Cricetulus , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Receptores Depuradores Classe E/metabolismo
5.
PLoS One ; 9(10): e110047, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347845

RESUMO

Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Adesinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Linhagem Celular , Humanos , Espaço Intracelular , Neisseria meningitidis/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Recombinantes , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa