Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes (Basel) ; 15(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674365

RESUMO

O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.


Assuntos
Proteínas de Ligação a DNA , Deficiências do Desenvolvimento , Criança , Humanos , Masculino , Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Megalencefalia/genética , Fenótipo , Splicing de RNA/genética , Mutação Silenciosa
2.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575714

RESUMO

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

3.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895307

RESUMO

The FOXP subfamily includes four different transcription factors: FOXP1, FOXP2, FOXP3, and FOXP4, all with important roles in regulating gene expression from early development through adulthood. Haploinsufficiency of FOXP1, due to deleterious variants (point mutations, copy number variants) disrupting the gene, leads to an emerging disorder known as "FOXP1 syndrome", mainly characterized by intellectual disability, language impairment, dysmorphic features, and multiple congenital abnormalities with or without autistic features in some affected individuals (MIM 613670). Here we describe a 10-year-old female patient, born to unrelated parents, showing hypotonia, intellectual disability, and severe language delay. Targeted resequencing analysis allowed us to identify a heterozygous de novo FOXP1 variant c.1030C>T, p.(Gln344Ter) classified as likely pathogenetic according to the American College of Medical Genetics and Genomics guidelines. To the best of our knowledge, our patient is the first to date to report carrying this stop mutation, which is, for this reason, useful for broadening the molecular spectrum of FOXP1 clinically relevant variants. In addition, our results highlight the utility of next-generation sequencing in establishing an etiological basis for heterogeneous conditions such as neurodevelopmental disorders and providing additional insight into the phenotypic features of FOXP1-related syndrome.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fala , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Síndrome , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
4.
Front Neurol ; 14: 1202971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448753

RESUMO

Purpose: To evaluate the electro-clinical features in association with laboratory and instrumental correlates of neurodegeneration to detect the progression of Lafora disease (LD). Methods: We investigated the electro-clinical longitudinal data and CSF Aß42, p-tau181 and t-tauAg, amyloid, and 18F-FDG PET of five unrelated LD families. Results: Three progressive electro-clinical stages were identified. The early phase was characterized by rare, generalized tonic-clonic and focal visual seizures, followed by the occurrence of myoclonus after a period ranging from 2 to 12 months. The intermediate stage, usually occurring 2 years after the onset of epilepsy, is characterized by a worsening of epilepsy and myoclonus associated with progressive dementia and cerebellar signs. Finally, the late stage, evolving after a mean period of 7 ± 1.41 years from the onset of the disease, was characterized by gait ataxia resulting in bedriddenness, severe dementia, daily/pluri-daily myoclonus, drug-resistant epilepsy, clusters of seizures or status epilepticus, and medical complications. Amyloid (CSF Aß42, amyloid PET) and neurodegenerative (CSF p-tau181 and t-tauAg, FDG-PET) biomarkers indicate a pattern of cognitive impairment of the non-Alzheimer's disease type. A total of 80% of the LD patients showed more severe hypometabolism in the second FDG-PET scan compared to the first scan performed in a lower phase; the lateral temporal lobe and the thalamus hypometabolism were associated with the presence of intermediate or late phase. Conclusions: Three electroclinical and 18F-FDG PET evolutive stages are useful biomarkers for the progression of LD and could help to evaluate the efficacy of new disease-modifying treatments. The combination of traditional CSF biomarkers improves the diagnostic accuracy of cognitive decline in LD patients, indicating a cognitive impairment of the non-Alzheimer's disease type.

5.
Genes (Basel) ; 12(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440290

RESUMO

The cohesin complex is a large evolutionary conserved functional unit which plays an essential role in DNA repair and replication, chromosome segregation and gene expression. It consists of four core proteins, SMC1A, SMC3, RAD21, and STAG1/2, and by proteins regulating the interaction between the complex and the chromosomes. Mutations in the genes coding for these proteins have been demonstrated to cause multisystem developmental disorders known as "cohesinopathies". The most frequent and well recognized among these distinctive clinical conditions are the Cornelia de Lange syndrome (CdLS, OMIM 122470) and Roberts syndrome (OMIM 268300). STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. Pathogenic variants in STAG1 gene have recently been reported to cause an emerging syndromic form of neurodevelopmental disorder that is to date poorly characterized. Here, we describe a 5 year old female patient with neurodevelopmental delay, mild intellectual disability, dysmorphic features and congenital anomalies, in which next generation sequencing analysis allowed us to identify a novel pathogenic variation c.2769_2770del p.(Ile924Serfs*8) in STAG1 gene, which result to be de novo. The variant has never been reported before in medical literature and is absent in public databases. Thus, it is useful to expand the molecular spectrum of clinically relevant alterations of STAG1 and their phenotypic consequences.


Assuntos
Mutação da Fase de Leitura , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
6.
Genes (Basel) ; 12(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562463

RESUMO

Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.


Assuntos
Transtornos Dismórficos Corporais/genética , Proteínas do Citoesqueleto/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Transtornos Dismórficos Corporais/patologia , Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Criança , Deficiências do Desenvolvimento/patologia , Éxons , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Deleção de Sequência/genética , Distúrbios da Fala/genética , Distúrbios da Fala/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa