Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015310

RESUMO

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , Transcriptoma
2.
Nature ; 616(7958): 814-821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046086

RESUMO

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Assuntos
Envelhecimento , Longevidade , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Ratos , Envelhecimento/genética , Insulina/metabolismo , Longevidade/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , RNA Circular , Somatomedinas , Nucleossomos , Histonas , Divisão Celular , Restrição Calórica
3.
Cell ; 150(3): 533-48, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863007

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exoma , Doenças Renais Císticas/genética , Proteínas dos Microtúbulos/metabolismo , Animais , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Proteína Homóloga a MRE11 , Camundongos , Proteínas , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
4.
Hum Mol Genet ; 32(22): 3153-3165, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37565816

RESUMO

Mutations in genes encoding nuclear pore proteins (NUPs) lead to the development of steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). However, the precise molecular mechanisms by which NUP dysfunction contributes to podocyte injury preceding FSGS remain unclear. The tightly regulated activity of Yes-associated protein (YAP) and WW-domain-containing transcription regulator 1 (TAZ), the transcriptional effectors of the Hippo pathway, is crucial for podocytes and the maintenance of the glomerular filter. In this study, we investigate the impact of NUPs on the regulation of YAP/TAZ nuclear import and activity in podocytes. In unbiased interactome studies using quantitative label-free mass spectrometry, we identify the FSGS disease gene products NUP107, NUP133, NUP205, and Exportin-5 (XPO5) as components of YAP and TAZ protein complexes in podocytes. Moreover, we demonstrate that NUP205 is essential for YAP/TAZ nuclear import. Consistently, both the nuclear interaction of YAP/TAZ with TEA domain transcription factor 1 and their transcriptional activity were dependent on NUP205 expression. Additionally, we elucidate a regulatory feedback mechanism whereby YAP activity is modulated in response to TAZ-mediated NUP205 expression. In conclusion, this study establishes a connection between the FSGS disease protein NUP205 and the activity of the transcriptional regulators and Hippo effectors YAP and TAZ and it proposes a potential pathological role of YAP/TAZ dysregulation in podocytes of patients with pathogenic NUP205 variants.


Assuntos
Glomerulosclerose Segmentar e Focal , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosfoproteínas/genética , RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
5.
J Am Soc Nephrol ; 34(5): 772-792, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758124

RESUMO

SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , NAD/metabolismo , Restrição Calórica , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Hipóxia
6.
J Am Soc Nephrol ; 34(8): 1366-1380, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367205

RESUMO

SIGNIFICANCE STATEMENT: Treatment of acute, crescentic glomerulonephritis (GN) consists of unspecific and potentially toxic immunosuppression. T cells are central in the pathogenesis of GN, and various checkpoint molecules control their activation. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown potential for restraining inflammation in other T-cell-mediated disease models. To investigate its role in GN in a murine model of crescentic nephritis, the authors induced nephrotoxic nephritis in BTLA-deficient mice and wild-type mice. They found that BTLA has a renoprotective role through suppression of local Th1-driven inflammation and expansion of T regulatory cells and that administration of an agonistic anti-BTLA antibody attenuated experimental GN. These findings suggest that antibody-based modulation of BTLA may represent a treatment strategy in human glomerular disease. BACKGROUND: Modulating T-lymphocytes represents a promising targeted therapeutic option for glomerulonephritis (GN) because these cells mediate damage in various experimental and human GN types. The immune checkpoint molecule B and T-lymphocyte attenuator (BTLA) has shown its potential to restrain inflammation in other T-cell-mediated disease models. Its role in GN, however, has not been investigated. METHODS: We induced nephrotoxic nephritis (NTN), a mouse model of crescentic GN, in Btla -deficient ( BtlaKO ) mice and wild-type littermate controls and assessed disease severity using functional and histologic parameters at different time points after disease induction. Immunologic changes were comprehensively evaluated by flow cytometry, RNA sequencing, and in vitro assays for dendritic cell and T-cell function. Transfer experiments into Rag1KO mice confirmed the observed in vitro findings. In addition, we evaluated the potential of an agonistic anti-BTLA antibody to treat NTN in vivo . RESULTS: The BtlaKO mice developed aggravated NTN, driven by an increase of infiltrating renal Th1 cells. Single-cell RNA sequencing showed increased renal T-cell activation and positive regulation of the immune response. Although BTLA-deficient regulatory T cells (Tregs) exhibited preserved suppressive function in vitro and in vivo , BtlaKO T effector cells evaded Treg suppression. Administration of an agonistic anti-BTLA antibody robustly attenuated NTN by suppressing nephritogenic T effector cells and promoting Treg expansion. CONCLUSIONS: In a model of crescentic GN, BTLA signaling effectively restrained nephritogenic Th1 cells and promoted regulatory T cells. Suppression of T-cell-mediated inflammation by BTLA stimulation may prove relevant for a broad range of conditions involving acute GN.


Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Nefrite , Camundongos , Humanos , Animais , Proteínas de Checkpoint Imunológico , Glomerulonefrite/patologia , Glomerulonefrite Membranoproliferativa/complicações , Inflamação/complicações , Camundongos Endogâmicos C57BL
7.
Kidney Int ; 104(6): 1164-1169, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774923

RESUMO

Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.


Assuntos
Podócitos , Animais , Camundongos , Capilares , Orientação Espacial , Glomérulos Renais , Artéria Renal , Mamíferos
8.
Kidney Int ; 103(6): 1120-1130, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990215

RESUMO

Morphological alterations at the kidney filtration barrier increase intrinsic capillary wall permeability resulting in albuminuria. However, automated, quantitative assessment of these morphological changes has not been possible with electron or light microscopy. Here we present a deep learning-based approach for segmentation and quantitative analysis of foot processes in images acquired with confocal and super-resolution fluorescence microscopy. Our method, Automatic Morphological Analysis of Podocytes (AMAP), accurately segments podocyte foot processes and quantifies their morphology. AMAP applied to a set of kidney diseases in patient biopsies and a mouse model of focal segmental glomerulosclerosis allowed for accurate and comprehensive quantification of various morphometric features. With the use of AMAP, detailed morphology of podocyte foot process effacement was found to differ between categories of kidney pathologies, showed detailed variability between diverse patients with the same clinical diagnosis, and correlated with levels of proteinuria. AMAP could potentially complement other readouts such as various omics, standard histologic/electron microscopy and blood/urine assays for future personalized diagnosis and treatment of kidney disease. Thus, our novel finding could have implications to afford an understanding of early phases of kidney disease progression and may provide supplemental information in precision diagnostics.


Assuntos
Aprendizado Profundo , Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Camundongos , Animais , Podócitos/patologia , Glomérulos Renais/patologia , Rim/diagnóstico por imagem , Rim/patologia , Glomerulosclerose Segmentar e Focal/diagnóstico por imagem , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/diagnóstico por imagem , Nefropatias/patologia
9.
BMC Med ; 21(1): 504, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110950

RESUMO

BACKGROUND: Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS: The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS: We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS: This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.


Assuntos
Insuficiência Renal Crônica , Simportadores , Humanos , Biomarcadores , Cálcio , Citratos , Creatinina , Cistatina C , Desenvolvimento de Medicamentos , Estudo de Associação Genômica Ampla , Rim , Análise da Randomização Mendeliana , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Simportadores/genética
10.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309183

RESUMO

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Assuntos
Dobramento de Proteína , Proteostase , Sobrevivência Celular , Proteoma/metabolismo , Estresse Mecânico
11.
BMC Nephrol ; 24(1): 378, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114895

RESUMO

The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocinΔexon5) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes' foot process morphology.Mice homozygous for podocinΔexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes' slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocinΔexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels.The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex.


Assuntos
Síndrome Nefrótica , Podócitos , Humanos , Animais , Camundongos , Podócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , RNA Mensageiro/metabolismo
12.
Eur Spine J ; 32(4): 1455-1462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826598

RESUMO

OBJECTIVE: Pyogenic spondylodiscitis is a severe medical condition, often requiring surgical intervention. Numerous risk factors are known, such as obesity, neurological impairment and old age. In-hospital mortality remains high, therefore other factors may be contributing to the increased mortality. To evaluate kidney function as a risk factor for increased morbidity of pyogenic spondylodiscitis, the glomerular filtration rate (GFR) was correlated with the patients' clinical course. MATERIALS AND METHODS: We retrospectively reviewed the cases of 366 patients and 255 were included for analysis. Clinical, laboratory and surgical data were recorded with a minimum follow-up of three months. For clinical outcome measurement, mortality, length of stay and perioperative complications were analysed. RESULTS: The study included 255 patients (173 men, 82 women; mean age 66.3 years). Patients with a GFR < 59 mL/min spent an average of 5 days longer in the hospital than those with a GFR ≥ 60 mL/min (p = 0.071). The mortality rate increased significantly with a decrease in GFR: A GFR of 30-59 mL/min had a mortality rate of 17.6%, whereas a GFR of < 29 mL/min had one of 30.4% (p = 0.003). Patients with impaired GFR showed an increased rate of postoperative complications (OR 4.7 p = 0.002) and higher rate of intensive care unit (ICU) stay (OR 8.7 p = < 0.001). DISCUSSION: Preoperative GFR values showed a significant correlation with in-hospital mortality in patients with spondylodiscitis, when graded according to the KDIGO stages. Furthermore, a GFR of < 29 ml/mL contributes to a longer ICU stay, postoperative complications and a longer total hospital stay. Therefore, the preoperative GFR could be a marker of kidney function and as a valuable predictive risk factor regarding the clinical in-hospital course of patients suffering from pyogenic spondylodiscitis.


Assuntos
Discite , Masculino , Humanos , Feminino , Idoso , Discite/cirurgia , Taxa de Filtração Glomerular , Estudos Retrospectivos , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Rim
13.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35260418

RESUMO

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Assuntos
Barreira de Filtração Glomerular , Proteínas dos Microfilamentos , Podócitos , Animais , Barreira de Filtração Glomerular/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo
14.
J Am Soc Nephrol ; 33(1): 138-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853150

RESUMO

BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.


Assuntos
Albuminúria/genética , Predisposição Genética para Doença/genética , Barreira de Filtração Glomerular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nefropatias/genética , Proteínas de Membrana/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/patologia
15.
Kidney Int ; 102(3): 560-576, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654224

RESUMO

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Restrição Calórica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Rim/metabolismo , Masculino , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
16.
Kidney Int ; 101(4): 733-751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34929254

RESUMO

Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1-GTP, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Podócitos , Actinas/metabolismo , Animais , Polaridade Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Camundongos , Podócitos/metabolismo , Proteína Quinase C
17.
Basic Res Cardiol ; 117(1): 38, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896846

RESUMO

Chronic kidney disease's prevalence rises globally. Whereas dialysis treatment replaces the kidney's filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease's complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells' varying responses to uremia from a systems immunology perspective.


Assuntos
Insuficiência Renal Crônica , Uremia , Humanos , Inflamação , Leucócitos , Macrófagos , Insuficiência Renal Crônica/complicações , Uremia/complicações
18.
Kidney Int ; 100(5): 1054-1062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332959

RESUMO

Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Animais , Glomérulos Renais , Camundongos , Estresse Mecânico
19.
Kidney Int ; 99(4): 1010-1020, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285146

RESUMO

In recent years, many light-microscopy protocols have been published for visualization of nanoscale structures in the kidney. These protocols present researchers with new tools to evaluate both foot process anatomy and effacement, as well as protein distributions in foot processes, the slit diaphragm and in the glomerular basement membrane. However, these protocols either involve the application of different complicated super resolution microscopes or lengthy sample preparation protocols. Here, we present a fast and simple, five-hour long procedure for three-dimensional visualization of kidney morphology on all length scales. The protocol combines optical clearing and tissue expansion concepts to produce a mild swelling, sufficient for resolving nanoscale structures using a conventional confocal microscope. We show that the protocol can be applied to visualize a wide variety of pathologic features in both mouse and human kidneys. Thus, our fast and simple protocol can be beneficial for conventional microscopic evaluation of kidney tissue integrity both in research and possibly in future clinical routines.


Assuntos
Glomérulos Renais , Rim , Animais , Rim/diagnóstico por imagem , Camundongos , Microscopia
20.
Int J Clin Pract ; 75(5): e13989, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33406298

RESUMO

OBJECTIVES: The Multidimensional Prognostic Index (MPI) is a prognostic tool-amongst others-validated for mortality, length of hospital stay (LHS) and rehospitalisation risk assessment. Like the Comprehensive Geriatric Assessment (CGA), the MPI is usually obtained at hospital admission and discharge, not during the hospital stay. The aim of the present study was to address the role of an additional CGA-based MPI measurement during hospitalisation as an indicator of "real-time" in-hospital changes. STUDY DESIGN AND MAIN OUTCOME MEASURES: Two-hundred consecutive multimorbid patients (128 M, 72 F, median age 75 (78-82)) admitted to an internal medicine ward of a German metropolitan university hospital prospectively underwent a CGA and a prognosis calculation using the MPI on admission and discharge. Seven to 10 days later, an intermediate assessment (IA) was performed for patients needing a longer stay. RESULTS: The median LHS was 10 (6-19) days. As expected, patients who received an IA had poorer prognosis as measured by higher MPI values (P = .037) and a worse functional status at admission than patients who had a shorter stay (P = .025). In case of prolonged hospitalisation, significant changes in the MPI were detected between admission and IA, both in terms of improvement and deterioration (P < .001). Different overtime courses were observed during prolonged hospitalisation according to the severity of prognosis (P < .001). CONCLUSION: A CGA-based MPI evaluation during hospitalisation can be used as an objective instrument to detect changes in multidimensional health course. Prompt identification of the latter may enable quick tailored interventions to ensure overall better outcomes at and after discharge.


Assuntos
Avaliação Geriátrica , Hospitalização , Idoso , Hospitais , Humanos , Tempo de Internação , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa