Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 32(6): 722-730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811352

RESUMO

Ultraviolet B exposure to keratinocytes promotes carcinogenesis by inducing pyrimidine dimer lesions in DNA, suppressing the nucleotide excision repair mechanism required to fix them, inhibiting the apoptosis required for the elimination of initiated cells, and driving cellular proliferation. Certain nutraceuticals - most prominently spirulina, soy isoflavones, long-chain omega-3 fatty acids, the green tea catechin epigallocatechin gallate (EGCG) and Polypodium leucotomos extract - have been shown to oppose photocarcinogenesis, as well as sunburn and photoaging, in UVB-exposed hairless mice. It is proposed that spirulina provides protection in this regard via phycocyanobilin-mediated inhibition of Nox1-dependent NADPH oxidase; that soy isoflavones do so by opposing NF-κB transcriptional activity via oestrogen receptor-beta; that the benefit of eicosapentaenoic acid reflects decreased production of prostaglandin E2; and that EGCG counters UVB-mediated phototoxicity via inhibition of the epidermal growth factor receptor. The prospects for practical nutraceutical down-regulation of photocarcinogenesis, sunburn, and photoaging appear favourable.


Assuntos
Isoflavonas , Queimadura Solar , Animais , Camundongos , Raios Ultravioleta/efeitos adversos , Queratinócitos/metabolismo , Suplementos Nutricionais , Camundongos Pelados
2.
Microorganisms ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399642

RESUMO

Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.

3.
Nutr Rev ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960726

RESUMO

Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.

4.
Eur J Rheumatol ; 11(3): 378-384, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39479968

RESUMO

Homeopathy has mainly been used to treat several diseases. On the other hand, it has been used in a few rheumatic disorders. The aim of this article is to review the use of homeopathy in rheumatic diseases (RDs). PubMed and Embase databases were examined for literature on homeopathy and RDs between 1966 and April 2023. There are 15 articles found with 811 patients. The diseases treated were osteoarthritis (n=3), followed by rheumatoid arthritis (n=3), ankylosing spondylitis (n=1), hyperuricemia (n=1), and tendinopathy (n=1). Age varied from 31 to 87 years old, and male gender ranged from 56.7% to 100%. Homeopathy changed from a fixed medicine to an individualized homeopathy. Most studies (9/15) demonstrated improvements after homeopathy. Side effects were not seen or minimal and were comparable to placebo groups. In conclusion, this review shows homeopathy is a promising and safe therapy for RD treatment. However, the data needs to be reproduced in future more extensive studies, including other rheumatic conditions.

5.
Microorganisms ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276215

RESUMO

Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.

6.
Sci Rep ; 13(1): 17526, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845267

RESUMO

Microbial transglutaminase (mTG) is a bacterial survival factor, frequently used as a food additive to glue processed nutrients. As a result, new immunogenic epitopes are generated that might drive autoimmunity. Presently, its contribution to autoimmunity through epitope similarity and cross-reactivity was investigated. Emboss Matcher was used to perform sequence alignment between mTG and various antigens implicated in many autoimmune diseases. Monoclonal and polyclonal antibodies made specifically against mTG were applied to 77 different human tissue antigens using ELISA. Six antigens were detected to share significant homology with mTG immunogenic sequences, representing major targets of common autoimmune conditions. Polyclonal antibody to mTG reacted significantly with 17 out of 77 tissue antigens. This reaction was most pronounced with mitochondrial M2, ANA, and extractable nuclear antigens. The results indicate that sequence similarity and cross-reactivity between mTG and various tissue antigens are possible, supporting the relationship between mTG and the development of autoimmune disorders 150W.


Assuntos
Doenças Autoimunes , Transglutaminases , Humanos , Antígenos , Epitopos , Anticorpos
7.
Biomedicines ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509576

RESUMO

The gastrointestinal tract can be heavily infected by SARS-CoV-2. Being an auto-immunogenic virus, SARS-CoV-2 represents an environmental factor that might play a role in gut-associated autoimmune diseases. However, molecular mimicry between the virus and the intestinal epitopes is under-investigated. The present study aims to elucidate sequence similarity between viral antigens and human enteric sequences, based on known cross-reactivity. SARS-CoV-2 epitopes that cross-react with human gut antigens were explored, and sequence alignment was performed against self-antigens implicated in enteric autoimmune conditions. Experimental SARS-CoV-2 epitopes were aggregated from the Immune Epitope Database (IEDB), while enteric antigens were obtained from the UniProt Knowledgebase. A Pairwise Local Alignment tool, EMBOSS Matcher, was employed for the similarity search. Sequence similarity and targeted cross-reactivity were depicted between 10 pairs of immunoreactive epitopes. Similar pairs were found in four viral proteins and seven enteric antigens related to ulcerative colitis, primary biliary cholangitis, celiac disease, and autoimmune hepatitis. Antibodies made against the viral proteins that were cross-reactive with human gut antigens are involved in several essential cellular functions. The relationship and contribution of those intestinal cross-reactive epitopes to SARS-CoV-2 or its potential contribution to gut auto-immuno-genesis are discussed.

8.
Microorganisms ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138121

RESUMO

The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele's groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene-environment enigma and viral-host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic.

9.
Biomedicines ; 10(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35327411

RESUMO

Immune checkpoint inhibitors herald a new era in oncological therapy-resistant cancer, thus bringing hope for better outcomes and quality of life for patients. However, as with other medications, they are not without serious side effects over time. Despite this, their advantages outweigh their disadvantages. Understanding the adverse effects will help therapists locate, apprehend, treat, and perhaps diminish them. The major ones are termed immune-related adverse events (irAEs), representing their auto-immunogenic capacity. This narrative review concentrates on the immune checkpoint inhibitors induced celiac disease (CD), highlighting the importance of the costimulatory inhibitors in CD evolvement and suggesting several mechanisms for CD induction. Unraveling those cross-talks and pathways might reveal some new therapeutic strategies.

10.
Toxics ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34678929

RESUMO

Microbial transglutaminase (mTG) is a heavily used food additive and its industrial transamidated complexes usage is rising rapidly. It was classified as a processing aid and was granted the GRAS (generally recognized as safe) definition, thus escaping full and thorough toxic and safety evaluations. Despite the manufacturers claims, mTG or its cross-linked compounds are immunogenic, pathogenic, proinflammatory, allergenic and toxic, and pose a risk to public health. The enzyme is a member of the transglutaminase family and imitates the posttranslational modification of gluten, by the tissue transglutaminase, which is the autoantigen of celiac disease. The deamidated and transamidated gliadin peptides lose their tolerance and induce the gluten enteropathy. Microbial transglutaminase and its complexes increase intestinal permeability, suppresses enteric protective pathways, enhances microbial growth and gliadin peptide's epithelial uptake and can transcytose intra-enterocytically to face the sub-epithelial immune cells. The present review updates on the potentially detrimental side effects of mTG, aiming to interest the scientific community, induce food regulatory authorities' debates on its safety, and protect the public from the mTG unwanted effects.

11.
Cells ; 10(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808124

RESUMO

Wheat is a most favored staple food worldwide and its major protein is gluten. It is involved in several gluten dependent diseases and lately was suggested to play a role in non-celiac autoimmune diseases. Its involvement in neurodegenerative conditions was recently suggested but no cause-and-effect relationship were established. The present narrative review expands on various aspects of the gluten-gut-brain axes events, mechanisms and pathways that connect wheat and gluten consumption to neurodegenerative disease. Gluten induced dysbiosis, increased intestinal permeabillity, enteric and systemic side effects, cross-reactive antibodies, and the sequence of homologies between brain antigens and gluten are highlighted. This combination may suggest molecular mimicry, alluding to some autoimmune aspects between gluten and neurodegenerative disease. The proverb of Hippocrates coined in 400 BC, "let food be thy medicine," is critically discussed in the frame of gluten and potential neurodegeneration evolvement.


Assuntos
Glutens/efeitos adversos , Degeneração Neural/induzido quimicamente , Animais , Encéfalo/patologia , Reações Cruzadas , Proteínas de Ligação ao GTP/metabolismo , Trato Gastrointestinal/patologia , Glutens/química , Humanos , Degeneração Neural/psicologia , Proteína 2 Glutamina gama-Glutamiltransferase , Homologia de Sequência de Aminoácidos , Transglutaminases/metabolismo
12.
J Asthma Allergy ; 14: 1257-1266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737578

RESUMO

Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H2S) likewise opposes mast cell activation; H2S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes - including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H2S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H2S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa