RESUMO
Epichloë species with their asexual states are specialized fungi associated with cool-season grasses. they grow endophytically in tissues of aerial parts of host plants to form systemic and mostly asymptomatic associations. Their life cycles may involve vertical transmission through host seeds and/or horizontal transmission from one plant to other plants of the same species through fungal propagules. Vertical transmission has been well studied, but comparatively little research has been done on horizontal dissemination. The goal of this review is to provide new insights on modes of dissemination of systemic grass endophytes. The review addresses recent progress in research on (i) the process of growth of Epichloë endophytes in the host plant tissues, (ii) the types and development of reproductive structures of the endophyte, (iii) the role of the reproductive structures in endophyte dissemination and host plant infection processes and (iv) some ecological and evolutionary implications of their modes of dissemination. Research in the Epichloë grass endophytes has accelerated in the past 25 y and has demonstrated the enormous complexity in endophyte-grass symbioses. There still remain large gaps in our understanding of the role and functions of these fungi in agricultural systems and understanding the functions, ecology and evolution of these endophytes in natural grass populations.
Assuntos
Evolução Biológica , Endófitos/crescimento & desenvolvimento , Epichloe/crescimento & desenvolvimento , Poaceae/microbiologia , Endófitos/genética , Epichloe/genética , Epichloe/fisiologia , Poaceae/fisiologia , SimbioseRESUMO
Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested presence of genes for both compounds in the genome of SY1. HCN was detected in cultures of SY1. We conclude that microbes from non-cultivated plants may provide disease protection and promote growth of crop plants.
RESUMO
Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500µg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance).
Assuntos
Antifúngicos/metabolismo , Bacillus/metabolismo , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipopeptídeos/metabolismo , Zea mays/imunologia , Zea mays/microbiologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Bacillus/classificação , Bacillus/imunologia , Bacillus/isolamento & purificação , Endófitos/classificação , Endófitos/imunologia , Endófitos/isolamento & purificação , Fusarium/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes de Plantas , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Desenvolvimento Vegetal/efeitos dos fármacos , Sementes/microbiologiaRESUMO
Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase.
RESUMO
We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research.