Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(17): 175001, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680872

RESUMO

Three-wave nonlinear coupling among spatial Fourier modes of density and magnetic fluctuations is directly measured in a magnetically confined toroidal plasma. Density fluctuations are observed to gain (lose) energy from (to) either equilibrium or fluctuating fields depending on the mode number. Experiments indicate that nonlinear interactions alter the phase relation between density and magnetic fluctuations, leading to strong particle transport.

2.
Phys Rev Lett ; 107(25): 255001, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22243082

RESUMO

We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.

3.
Rev Sci Instrum ; 83(10): 10E316, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126975

RESUMO

A laser-based (2.55 THz) mulitchord polarimeter is now operational on Alcator C-Mod and is used to make measurements of the internal magnetic field structure as well as plasma fluctuations. The polarimeter is designed to measure the Faraday effect for high-field (up to 8.3 T) and high-density (up to 5 × 10(20) m(-3)) ITER relevant plasma conditions. Initial 3 chord tests are consistent with magnetic equilibrium reconstructions and indicate no measurable contamination from the toroidal magnetic field due to the Cotton-Mouton effect or misalignment. Time response of <1 µs enables the measurement of fast equilibrium temporal dynamics as well as high-frequency fluctuations.

4.
Rev Sci Instrum ; 81(10): 10D508, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033863

RESUMO

Recently, the far-infrared (FIR) laser (λ(0)=432 µm) Faraday rotation measurement system on MST has been upgraded. The dc flowing-gas discharge CO(2) pump laser is replaced by a rf-excited, sealed CO(2) laser at 9.27 µm (GEM select 100, Coherent Inc., Santa Clara, CA), which is subdivided equally into three parts to simultaneously pump three FIR cavities. The total infrared pump power is approximately 80 W on the 9R(20) line required to pump the formic acid molecule. Each FIR cavity produces ∼12 mW, sufficient for 11 simultaneous chord interferometry-polarimetry operations. Three key issues [(1) conservation of circularly polarized wave, (2) colinearity of two probe waves, and (3) stability of intermediate frequencies between lasers] affecting the Faraday rotation measurement have been resolved experimentally.

5.
Rev Sci Instrum ; 81(12): 123503, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21198019

RESUMO

The rotating wall machine, a basic plasma physics experimental facility, has been constructed to study the role of electromagnetic boundary conditions on current-driven ideal and resistive magnetohydrodynamic instabilities, including differentially rotating conducting walls. The device, a screw pinch magnetic geometry with line-tied ends, is described. The plasma is generated by an array of 19 plasma guns that not only produce high density plasmas but can also be independently biased to allow spatial and temporal control of the current profile. The design and mechanical performance of the rotating wall as well as diagnostic capabilities and internal probes are discussed. Measurements from typical quiescent discharges show the plasma to be high ß (≤p>2µ(0)/B(z)(2)), flowing, and well collimated. Internal probe measurements show that the plasma current profile can be controlled by the plasma gun array.

6.
Rev Sci Instrum ; 81(10): 10D509, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033864

RESUMO

Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used on the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.

7.
Rev Sci Instrum ; 81(10): 10D507, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033862

RESUMO

A poloidally viewing far infrared polarimeter diagnostic is being developed for the Alcator C-Mod tokamak, and will be used to determine the q-profile and to study density and magnetic field fluctuations. A three-chord version of what will eventually be up to a ten-chord system has been designed and fabricated and will be installed on C-Mod before the end of the current run period. Bench tests of a single chord mock-up of this system show acceptable noise levels for the planned measurements. We will discuss the analysis and experimental techniques used to diagnose and reduce noise sources.

8.
Phys Rev Lett ; 101(23): 235005, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113564

RESUMO

The resistive wall mode is experimentally identified and characterized in a line-tied, cylindrical screw pinch when the edge safety factor is less than a critical value. Different wall materials have been used to change the wall time and show that the growth rates for the RWM scale with wall time and safety factor as expected by theory. The addition of a ferritic wall material outside the conducting shell leads to growth rates larger than the observed RWM and larger than theoretical predictions for the ferritic wall mode.

9.
Phys Rev Lett ; 96(1): 015004, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486469

RESUMO

An internal kink instability is observed to grow and saturate in a line-tied screw pinch plasma. Detailed measurements show that an ideal, line-tied kink mode begins growing when the safety factor q = (4pi2r2B(z))/(mu0I(p)(r)L) drops below 1 inside the plasma; the saturated state corresponds to a rotating helical equilibrium. In addition to the ideal mode, reconnection events are observed to periodically flatten the current profile and change the magnetic topology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa