Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(4): 1664-1676, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459355

RESUMO

Integrated continuous downstream processes with process analytical technology offer a promising opportunity to reduce production costs and increase process flexibility and adaptability. In this case study, an integrated continuous process was used to purify a recombinant protein on laboratory scale in a two-system setup that can be used as a general downstream setup offering multiproduct and multipurpose manufacturing capabilities. The process consisted of continuous solvent/detergent virus inactivation followed by periodic countercurrent chromatography in the capture step, and a final chromatographic polishing step. A real-time controller was implemented to ensure stable operation by adapting the downstream process to external changes. A concentration disturbance was introduced to test the controller. After the disturbance was applied, the product output recovered within 6 h, showing the effectiveness of the controller. In a comparison of the process with and without the controller, the product output per cycle increased by 27%, the resin utilization increased from 71.4% to 87.9%, and the specific buffer consumption was decreased by 21% with the controller, while maintaining a similar yield and purity as in the process without the disturbance. In addition, the integrated continuous process outperformed the batch process, increasing the productivity by 95% and the yield by 28%.


Assuntos
Modelos Químicos , Inativação de Vírus , Animais , Células CHO , Distribuição Contracorrente , Cricetulus
2.
J Biotechnol ; 301: 45-51, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145936

RESUMO

In this work, an automated downstream process for the purification and formulation of a recombinant protein was integrated at lab scale in a single chromatography unit. The purification chain consists of three bind-and-elute chromatography columns, a flow-through membrane chromatography step, and a final ultrafiltration-diafiltration (UFDF) step to concentrate and formulate the sample. An integrated downstream process increases productivity and decreases process time and hold-up volume. In addition, the automation of the process allows reducing the manual work and increases reproducibility. To integrate the downstream steps, all the intermediate tanks are removed, and the eluate of a column is loaded directly onto the next one. This makes it necessary to design the process in order to minimize the column volumes and the process time. A research software called Orbit was used to automate the purification process and implement a UFDF step in the chromatography unit. The whole downstream sequence was successfully implemented at lab scale, getting a pure concentrated and formulated product with a productivity of 1.09 mg mL-1 h-1, achieving a time reduction from almost two to one working day, while getting a similar yield and purity. Regarding the UFDF operation, the sample was concentrated 10 times, and 97% of the old buffer was exchanged by the formulation buffer with a sequential diafiltration.


Assuntos
Automação Laboratorial/métodos , Reatores Biológicos , Cromatografia/métodos , Proteínas Recombinantes , Meios de Cultura/química , Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa