Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 53, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709253

RESUMO

BACKGROUND: Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS: Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION: Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.


Assuntos
Glomeromycota , Micorrizas , Humanos , Alelos , Micorrizas/genética , Polimorfismo Genético , Plantas/genética , Simbiose/genética , Raízes de Plantas
2.
Mycorrhiza ; 32(5-6): 361-371, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161535

RESUMO

Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi. In this study, we used field isolated spores of AM fungi and identified them as Funneliformis geosporum based on morphology and phylogenetic analyses. We separately assembled the genomes of two representative spores using DNA sequences of 19 and 22 individually amplified nuclei. The genomes were compared with previously published data from other members of Glomeraceae including two strains of F. mosseae. No significant differences were observed among the species in terms of gene content, while the single nucleotide polymorphism density was higher in the strains of F. geosporum than in the strains of F. mosseae. In this study, we demonstrate that it is possible to sequence and assemble genomes from AM fungal spores sampled in the field, which opens up the possibility to include uncultured AM fungi in phylogenomic and comparative genomic analysis and to study genomic variation in natural populations of these important plant symbionts.


Assuntos
Glomeromycota , Micorrizas , Fungos , Glomeromycota/genética , Micorrizas/genética , Filogenia , Plantas , Esporos Fúngicos
3.
Nature ; 443(7114): 950-5, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16980956

RESUMO

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.


Assuntos
Genômica , Oligoquetos/microbiologia , Oligoquetos/fisiologia , Proteobactérias/genética , Proteobactérias/metabolismo , Simbiose/genética , Simbiose/fisiologia , Animais , Carbono/metabolismo , Digestão/fisiologia , Metabolismo Energético , Meio Ambiente , Microbiologia , Modelos Biológicos
4.
Sci Rep ; 12(1): 5772, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388090

RESUMO

DNA methylation is a central epigenetic mark that has diverse roles in gene regulation, development, and maintenance of genome integrity. 5 methyl cytosine (5mC) can be interrogated at base resolution in single cells by using bisulfite sequencing (scWGBS). Several different scWGBS strategies have been described in recent years to study DNA methylation in single cells. However, there remain limitations with respect to cost-efficiency and yield. Herein, we present a new development in the field of scWGBS library preparation; single cell Splinted Ligation Adapter Tagging (scSPLAT). scSPLAT employs a pooling strategy to facilitate sample preparation at a higher scale and throughput than previously possible. We demonstrate the accuracy and robustness of the method by generating data from 225 single K562 cells and from 309 single liver nuclei and compare scSPLAT against other scWGBS methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sulfitos , Metilação de DNA , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oligonucleotídeos , Análise de Sequência de DNA/métodos
5.
Front Fungal Biol ; 2: 716385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744125

RESUMO

Morphological characters and nuclear ribosomal DNA (rDNA) phylogenies have so far been the basis of the current classifications of arbuscular mycorrhizal (AM) fungi. Improved understanding of the evolutionary history of AM fungi requires extensive ortholog sampling and analyses of genome and transcriptome data from a wide range of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and combined genomic data from single nuclei to generate de novo genome assemblies covering seven families of AM fungi. We successfully sequenced the genomes of 15 AM fungal species for which genome data was not previously available. Comparative analysis of the previously published Rhizophagus irregularis DAOM197198 assembly confirm that our novel workflow generates genome assemblies suitable for phylogenomic analysis. Predicted genes of our assemblies, together with published protein sequences of AM fungi and their sister clades, were used for phylogenomic analyses. We evaluated the phylogenetic placement of Glomeromycota in relation to its sister phyla (Mucoromycota and Mortierellomycota), and found no support to reject a polytomy. Finally, we explored the phylogenetic relationships within Glomeromycota. Our results support family level classification from previous phylogenetic studies, and the polyphyly of the order Glomerales with Claroideoglomeraceae as the sister group to Glomeraceae and Diversisporales.

6.
Sci Rep ; 10(1): 1303, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992756

RESUMO

The advent of novel sequencing techniques has unraveled a tremendous diversity on Earth. Genomic data allow us to understand ecology and function of organisms that we would not otherwise know existed. However, major methodological challenges remain, in particular for multicellular organisms with large genomes. Arbuscular mycorrhizal (AM) fungi are important plant symbionts with cryptic and complex multicellular life cycles, thus representing a suitable model system for method development. Here, we report a novel method for large scale, unbiased nuclear sorting, sequencing, and de novo assembling of AM fungal genomes. After comparative analyses of three assembly workflows we discuss how sequence data from single nuclei can best be used for different downstream analyses such as phylogenomics and comparative genomics of single nuclei. Based on analysis of completeness, we conclude that comprehensive de novo genome assemblies can be produced from six to seven nuclei. The method is highly applicable for a broad range of taxa, and will greatly improve our ability to study multicellular eukaryotes with complex life cycles.


Assuntos
Biologia Computacional/métodos , Eucariotos/genética , Genoma , Genômica , Algoritmos , Fungos/genética , Genômica/métodos , Fluxo de Trabalho
7.
Microbiome ; 6(1): 173, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266101

RESUMO

BACKGROUND: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms. RESULTS: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (average 99.51% sequence identity; range 98.77-99.84%) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs. CONCLUSIONS: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.


Assuntos
Bactérias/genética , Genoma Bacteriano/genética , Metagenoma/genética , Microbiota/genética , Técnicas de Amplificação de Ácido Nucleico , Sequenciamento Completo do Genoma/métodos , Bactérias/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Oceanos e Mares , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Suécia
8.
PLoS One ; 8(4): e61126, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593407

RESUMO

Termites effectively feed on many types of lignocellulose assisted by their gut microbial symbionts. To better understand the microbial decomposition of biomass with varied chemical profiles, it is important to determine whether termites harbor different microbial symbionts with specialized functionalities geared toward different feeding regimens. In this study, we compared the microbiota in the hindgut paunch of Amitermes wheeleri collected from cow dung and Nasutitermes corniger feeding on sound wood by 16S rRNA pyrotag, comparative metagenomic and metatranscriptomic analyses. We found that Firmicutes and Spirochaetes were the most abundant phyla in A. wheeleri, in contrast to N. corniger where Spirochaetes and Fibrobacteres dominated. Despite this community divergence, a convergence was observed for functions essential to termite biology including hydrolytic enzymes, homoacetogenesis and cell motility and chemotaxis. Overrepresented functions in A. wheeleri relative to N. corniger microbiota included hemicellulose breakdown and fixed-nitrogen utilization. By contrast, glycoside hydrolases attacking celluloses and nitrogen fixation genes were overrepresented in N. corniger microbiota. These observations are consistent with dietary differences in carbohydrate composition and nutrient contents, but may also reflect the phylogenetic difference between the hosts.


Assuntos
Fezes/parasitologia , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Isópteros/microbiologia , Metagenoma/genética , Metagenômica , Madeira/parasitologia , Animais , Bactérias/genética , Bactérias/metabolismo , Bovinos , Parede Celular/metabolismo , Quimiotaxia/genética , Comportamento Alimentar , Glicosídeo Hidrolases/metabolismo , Isópteros/enzimologia , Isópteros/genética , Lignina/metabolismo , Nitrogênio/metabolismo , Filogenia , Células Vegetais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Nat Rev Microbiol ; 6(10): 725-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18794911

RESUMO

Chemosynthetic symbioses between bacteria and marine invertebrates were discovered 30 years ago at hydrothermal vents on the Galapagos Rift. Remarkably, it took the discovery of these symbioses in the deep sea for scientists to realize that chemosynthetic symbioses occur worldwide in a wide range of habitats, including cold seeps, whale and wood falls, shallow-water coastal sediments and continental margins. The evolutionary success of these symbioses is evident from the wide range of animal groups that have established associations with chemosynthetic bacteria; at least seven animal phyla are known to host these symbionts. The diversity of the bacterial symbionts is equally high, and phylogenetic analyses have shown that these associations have evolved on multiple occasions by convergent evolution. This Review focuses on the diversity of chemosynthetic symbionts and their hosts, and examines the traits that have resulted in their evolutionary success.


Assuntos
Euryarchaeota/metabolismo , Água do Mar , Simbiose/fisiologia , Animais , Interações Hospedeiro-Parasita , Biologia Marinha
10.
Environ Microbiol ; 8(8): 1441-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16872406

RESUMO

Bathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur-oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent sites (Menez Gwen, Lucky Strike, Rainbow, and Logatchev) using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH) showed that the two mussel species share highly similar to identical symbiont phylotypes. FISH observations of symbiont distribution and relative abundances showed no obvious differences between the two host species. In contrast, distinct differences in relative symbiont abundances were observed between mussels from different sites, indicating that vent chemistry may influence the relative abundance of thiotrophs and methanotrophs in these dual symbioses.


Assuntos
Gammaproteobacteria , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Mytilidae/microbiologia , RNA Ribossômico 16S/genética , Sulfetos/metabolismo , Simbiose , Animais , Oceano Atlântico , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Brânquias/microbiologia , Hibridização in Situ Fluorescente , Técnicas de Sonda Molecular , Mytilidae/fisiologia , Filogenia , Água do Mar/microbiologia , Especificidade da Espécie , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa